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Abstract. This paper shows how enhanced lumping approximation techniques can be employed for calculating the mean

stream temperature in thermally developing fluid flow. The adopted methodology consists in transforming the original

convection-diffusion partial-differential equations into a simpler one-dimensional form, using approximation rules pro-

vided by the Coupled Integral Equations Approach (CIEA). The simpler transformed system can then be directly integrated

and analytical solutions for the mean stream temperature can be readily obtained, which implies in a significant reduc-

tion the required computational effort. The results calculated with the simplified formulations are then compared with

solutions for the original partial-differential problem and very reasonable agreement is seen.
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1. INTRODUCTION

Approximating an integral by a linear combination of the integrand values and its derivatives at the integration limits,
was an idea originally developed by Hermite (1878) and first presented by Menning et al. (1983), the first ones to use
this two-point approach, deriving it in a fully differential form called Hα,β . Using the Hermite formulas for obtained
improved-lumped formulations, known as the Coupled Integral Equaitons Approach (CIEA), can be found in a variety
of heat transfer studies, among which recent applications include ablation (Ruperti et al., 2004), drying (Dantas et al.,
2007), heat conduction with temperature-dependent conductivity (Su et al., 2009) and adsorbed gas storage (Sphaier and
Jurumenha, Available online on May 2012) In this study, the CIEA is employed for the problem of thermally developing
fluid flow within a parallel-plates duct. With this approach enhanced lumped-differential formulations for representing the
problem are obtained. The formulations are naturally simpler the the original equation since it consists of simple ODEs
for determining the mean stream temperature, while the original problem was a PDE for calculating the temperature field
and from this result calculating the same averaged temperature.

2. PROBLEM FORMULATION AND HERMITE APPROXIMATION

In order to illustrate the proposed methodology, a general problem of flow within parallel plates is considered, which
written in dimensionless form is given by:

u∗
∂θ

∂ξ
= Pe−2

∂2θ

∂ξ2
+

∂2θ

∂η2
, θ(0, η) = 0,

∣∣∣∣∂θ∂ξ
∣∣∣∣
ξ→∞

< ∞, (1a)(
∂θ

∂η

)
η=0

= 0, θ(ξ, 1) = 1, (1b)

where the employed dimensionless parameters and variables are defined as:

Pe =
ūH/2

α
η =

y

H/2
, ξ =

x

L
, L =

H

2
Pe, θ =

T − Tmin

Tmax − Tmin
, (2)

The basis for the Coupled Integral Equations Approach (CIEA) is the Hermite approximation of an integral, denoted,
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Hα,β , which is given by the general expression:

∫ xi

xi−1

f(x)dx =

α∑
ν=0

cν(α, β)hν+1
i f (ν)(xi−1) +

β∑
ν=0

cν(β, α)(−1)νhν+1
i f (ν)(xi) + Eα,β (3a)

where,

hi = xi − xi−1, cν(α, β) =
(α+ 1)!(α+ β − ν + 1)!

(ν + 1)!(α− ν)!(α+ β + 2)!
(3b)

and f(x) and its derivatives f (ν)(x) are defined for all x ∈ [xi−1, xi]. Eα,β is the error in the approximation. It is assumed
that f (ν)(xi−1) = f

(ν)
i−1 for ν = 0, 1, 2, . . . , α and f (ν)(xi) = f

(ν)
i for ν = 0, 1, 2, . . . , β.

The Hermite integration formula can provide different approximation levels, starting from the classical lumped system
analysis towards improved lumped-differential formulations. A detailed error analysis of the application of the CIEA to
diffusion problems usingH0,0,H0,1,H1,0, andH1,1 Hermite approximations was carried out in (de B. Alves et al., 2000).
Since approximations of order higher than H1,1 involve derivatives of order higher than one, these are avoided for the
sake of simplicity of the methodology. Hence, only the two different approximations below are considered:

H0,0 ⇒
∫ h

0

f(x) dx ≈ 1

2
h(f(0) + f(h)), (4a)

H1,1 ⇒
∫ h

0

f(x) dx ≈ 1

2
h(f(0) + f(h)) +

1

12
h2(f ′(0)− f ′(h)), (4b)

which correspond to the well-known trapezoidal and corrected trapezoidal integration rules, respectively.

3. PLUG-FLOW ANALYSIS

For the simplified plug-flow case, u∗ = 1 and the mean stream temperature equals the average temperature definition.
Integrating equations (1a) and applying the average definition leads to the following ODE system:

dθ

dξ
= Pe−2

d2θ

dξ2
+

(
∂θ

∂η

)
η=1

, θ(0) = 0,

∣∣∣∣dθdξ

∣∣∣∣
ξ→∞

< ∞. (5)

The Classical Lumped-System Analysis (CLSA) consists in approximating the averages directly by boundary val-
ues, which corresponds to applying the rectangular integration approximation rule. In order to avoid a constant mean
stream temperature, and in order to obtain a relation that leads to θ(ξ, 0) different than θ(ξ, 1), the following integral
approximations are used:

θ(ξ) =

∫ 1

0

θ dη ≈ θ(ξ, 0),

∫ 1

0

∂θ

∂η
dη ≈

(
∂θ

∂η

)
η=1

(6)

which leads to the following relation for the wall derivative:(
∂θ

∂η

)
η=1

≈ θ(ξ, 1) − θ(ξ) = 1 − θ(ξ) (7)

such that the solution of the averaged system (5) is given by:

θ(ξ) = 1 − exp

(
Pe2 ξ

/
2− Pe

2

√
4 + Pe2 ξ

)
(8)
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3.1 Improved Lumped-System Analysis

3.1.1 H0,0/H0,0 formulation

Using the H0,0 scheme for approximating the integrals of θ and its derivative yields:

∫ 1

0

θ dη ≈ 1

2

(
θ(ξ, 0) + θ(ξ, 1)

)
,

∫ 1

0

∂θ

∂η
dη ≈ 1

2

((
∂θ

∂η

)
η=0

+

(
∂θ

∂η

)
η=1

)
. (9)

Using the boundary conditions and solving for the wall derivative gives:(
∂θ

∂η

)
η=1

≈ 4
(
1 − θ(ξ)

)
(10)

such that the solution of the averaged system (5) is given by:

θ(ξ) = 1 − exp

(
Pe2 ξ

/
2− Pe

2

√
16 + Pe2 ξ

)
(11)

3.1.2 H1,1/H0,0 formulation

This scheme is based on using H1,1 approximation for the temperature integral:

∫ 1

0

θ dη ≈ 1

2

(
θ(ξ, 0) + θ(ξ, 1)

)
+

1

12

((
∂θ

∂η

)
η=0

−
(
∂θ

∂η

)
η=1

)
(12)

and the same H0,0 approximation for its derivative integral. Applying boundary conditions and solving for the wall
derivative yields:(

∂θ

∂η

)
η=1

≈ 3
(
1 − θ(ξ)

)
(13)

such that the solution of the averaged system (5) is given by:

θ(ξ) = 1 − exp

(
Pe2 ξ

/
2− Pe

2

√
12 + Pe2 ξ

)
(14)

3.1.3 H1,1/H1,1 formulation

This approximation scheme relies on using the H1,1 for approximating the integral of θ and its derivative, the latter
being given by:

∫ 1

0

∂θ

∂η
dη ≈ 1

2

((
∂θ

∂η

)
η=0

+

(
∂θ

∂η

)
η=1

)
+

1

12

((
∂2θ

∂η2

)
η=0

−
(
∂2θ

∂η2

)
η=1

)
(15)

Substituting boundary conditions leads to:

1 − θ(ξ, 0) ≈ 1

2

(
∂θ

∂η

)
η=1

+
1

12

((
∂θ

∂ξ

)
η=0

− Pe−2
(
∂2θ

∂ξ2

)
η=0

)
(16)

Eliminating the wall derivative from the previous equation and the H1,1 temperature integral, and substituting in the
integrated energy balance leads to:
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dθ

dξ
= 6 + 6 θ0(ξ)− 12 θ(ξ) + Pe−2

d2θ

dξ2
, 24 + 48 θ0(ξ) − 72 θ(ξ) +

dθ0
dξ

= Pe−2
d2θ0
dξ2

, (17)

where θ0 = θ(ξ, 0). This coupled ODE system can be solved directly for θ; however the solution is not presented due
to space limitations. For large Péclet numbers a simple form can be obtained:

θ(ξ) = 1− 1

21
exp(−30 ξ)

(
21 cosh(6

√
21 ξ) + 4

√
21 sinh(6

√
21 ξ)

)
(18)

4. LAMINAR FLOW ANALYSIS

This section presents the methodology for laminar flow (Hagen-Poiseuille profile), u∗ = ū 3
2

(
1− η2

)
, in which the

average is given by θ(ξ) =
∫ 1

0
θ(ξ, η) dη and the meam stream temperature is defined by θm(ξ) =

∫ 1

0
u∗θ(ξ, η) dη.

Average and mean stream temperature definition and boundary condition substitution:

dθm
dξ

= Pe−2
d2θ

dξ2
+

(
∂θ

∂η

)
η=1

, (19)

For isothermal wall different levels of approximation can lead to different lumped formulations, as described next.

4.1 Improved Lumped-System Analysis

4.1.1 H0,0/H0,0/H0,0 formulation

This scheme is based on using H0,0 approximation for the misture temperature integral:∫ 1

0

u∗θ dη ≈ 1

2

(
u∗(0) θ(ξ, 0) + u∗(1) θ(ξ, 1)

)
(20)

and the same H0,0 approximation for the temperature and for its derivative integral. Applying boundary conditions and
solving for the wall derivatives yields:(

∂θ

∂η

)
η=1

≈ 1 − 2

3
θm(ξ),

d2θ

dξ2
≈ 2

3

d2θm
dξ2

(21)

such that the solution of the averaged system (19) is given by:

θm(ξ) =
3

4
− 3

4
exp

(
3 Pe2 ξ/4− Pe

4

√
64 + 9 Pe2ξ

)
(22)

4.1.2 H1,1/H0,0/H1,1 formulation

This scheme is based on using H1,1 approximation for the misture temperature integral and for the averaged tempera-
ture integral:

∫ 1

0

u∗θ dη ≈ 1

2

(
u∗(0) θ(ξ, 0) + u∗(1) θ(ξ, 1)

)
+

1

12

((
∂(u∗θ)

∂η

)
η=0

−
(
∂(u∗θ)

∂η

)
η=1

)
(23)

∫ 1

0

θ dη ≈
(
θ(ξ, 0) + θ(ξ, 1)

)
+

1

12

((
∂θ

∂η

)
η=0

−
(
∂θ

∂η

)
η=1

)
(24)
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and the sameH0,0approximation for its derivative integral. Applying boundary conditions and solving for the wall deriva-
tives yields:(

∂θ

∂η

)
η=1

≈ 8

3

(
1 − θm(ξ)

)
,

d2θ

dξ2
≈ 8

9

d2θm
dξ2

(25)

such that the solution of the averaged system (19) is given by:

θm(ξ) = 1− exp
(

9 Pe2 ξ/16− Pe

16

√
768 + 81 Pe2ξ

)
(26)

4.2 H1,1/H1,1/H1,1formulation

This scheme is based on using H1,1 approximation for the derivative temperature integral:

∫ 1

0

∂θ

∂η
dη ≈ 1

2

((
∂θ

∂η

)
η=0

+

(
∂θ

∂η

)
η=1

)
+

1

12

((
∂2θ

∂η2

)
η=0

−
(
∂2θ

∂η2

)
η=1

)
(27)

and the same H1,1approximation for the averaged and misture temperature integral. Substituting boundary conditions
leads to:

1 − θ(ξ, 0) ≈ 1

2

(
∂θ

∂η

)
η=1

+
1

12

(3

4

(
∂θ

∂ξ

)
η=0

− Pe−2
(
∂2θ

∂ξ2

)
η=0

)
(28)

(
∂θ

∂η

)
η=1

≈ 1

9

(
24 − 24 θm(ξ) − 3

dθm
dξ

+ 2 Pe−2
d2θm
dξ2

)
(29)

substituting in equation (5), leads to:

dθm
dξ

= Pe−2
d2θ

dξ2
+

1

9

(
24 − 24 θm(ξ) − 3

dθm
dξ

+ 2 Pe−2
d2θm
dξ2

)
(30)

For no axial diffusion (large Péclet number):

dθm
dξ

= 2
(

1− θm
)

(31)

which provides the following solution:

θm(ξ) = 1− exp(−2 ξ) (32)

The solution with axial diffusion is not presented due to space limitations.

5. RESULTS AND DISCUSSION

The previous solutions are compared with the exact solution of the Graetz problem with a plug-flow profile, given by:

θm(ξ) = 1 +

∞∑
n=1

bn exp(−βn ξ), bn =
8

(2n− 1)2 π2
, βn =

1

2

(
Pe2 −

√
Pe4 + 4 Pe2 µ2

n

)
(33)

where µn = (n− 1/2)π.
Figure 1 Presents comparative results of all different approximation schemes, including the previous exact solution,

for different Péclect values. As can be seen, the CLSA solution underestimates the mean temperature by a significant
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amount, while the H0,0/H0,0 scheme generally overestimates it by a smaller amount. In spite of this, The H0,0/H1,1 and
H1,1/H1,1 show a very good agreement with the exact solution.
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Figure 1. Comparison between different lumped approximation schemes and exact solution for different Péclet numbers.

Figure 2 Presents comparative results of all different approximation schemes, including the exact solution, for different
Péclet values. As can be seen, the CLSA solution is not a good approximation to the mean temperature by a significant
amount, and the H0,0/H0,0/H0,0 scheme does not approximate very well also. In spite of this, The H1,1/H0,0/H1,1 and
H1,1/H1,1/H1,1 show a very good agreement with the exact solution.
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Figure 2. Comparison between different lumped approximation schemes and exact solution for different Péclet numbers
for a laminar flow.

6. CONCLUSIONS

This paper presented an alternative approach for calculating the mean stream temperature for dynamically-developed
thermally-developing flow. The simplified case of plug-flow was presented for illustrating the methodology and comparing
the results with a fully analytical solution. An approximate analytical methodology, based on the CIEA was utilized, and
the results showed very good agreement with the two-dimensional Graetz solution. A laminar flow case was presented
and the results showed very good aggrement.
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