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Abstract. The Vortex Method has been extensively used to simulate external flows around bluff and streamlined bodies. 
It relies on the discretization of the vorticity field into a cloud of vortex blobs to simulate the convective-diffusive 
transport of vorticity. Vortex blobs are generated in the neighborhood of the solid wall in order to satisfy the no-slip 
and the no-penetration boundary conditions, and they move in a Lagrangian manner to solve the vorticity transport 
equation. Despite the tremendous development that this powerful mesh-free technique has recently achieved, the 
numerical implementation of the wall boundary conditions is currently under intense investigation, since it is 
intimately connected to the vorticity generation process in the vicinity of the body surface. In this paper we describe an 
efficient two-dimensional vortex method algorithm, with emphasis on a new model for the vortex creation near the 
surface that increases the accuracy of the simultaneous implementation of the wall boundary conditions. We employ 
the Adaptive Fast Multipole Method to calculate the induced velocities and the Corrected Core-Spreading Method to 
simulate the vorticity diffusion in the boundary layer and wake. The method is second-order accurate in space when 
gaussian vortex blobs are used and second-order accurate in time when the Adams-Bashforth scheme is used to march 
the integration process in time. The algorithm is tested against the well-known two-dimensional, incompressible 
boundary-layer flow over a flat plate. The observed agreement between the numerical results and the exact Blasius 
solution indicates that the algorithm provides an excellent representation of the vorticity field. 
 
Keywords: vortex method, corrected core-spreading method, adaptive fast multipole method, Blasius flat-plate 
boundary layer, wall boundary conditions. 

 
 
1. INTRODUCTION  
 

The flow around bluff and streamlined bodies that usually arise in engineering applications is quite difficult to 
calculate due to the presence of several complex phenomena, such as boundary layer development and separation, 
vortex shedding and turbulence. For external flows of this type, the use of Eulerian methods may not be the most 
adequate approach because they require the construction of a numerical grid to discretize an infinite domain, which 
brings up mesh refinement and domain size issues that are not easily resolved. On the other hand, Lagrangian mesh-free 
numerical methods, such as the vortex method, present the advantage that no grid is necessary to compute the flow 
(Leonard, 1980). The vortex method is based on the numerical discretization of the vorticity field by a linear 
combination of moving basis functions (the vortex blobs). The convective term is replaced by ordinary differential 
equations for the blobs trajectories, which follow the local velocity.  

The first version of the vortex method that considered viscous effects was developed by Chorin (1973), who 
proposed the random-walk method to model viscous difusion. Since then, vortex methods have been substantially 
developed, despite facing difficulties coming from the evaluation of the Biot–Savart law, the Lagrangian modeling of 
viscous effects, and the loss of accuracy due to lagrangian distortion of the computational elements (Barba et al., 2005). 
This latter difficulty requires the overlap of blobs to accurately reconstruct a continuous field variable and guarantee 
convergence of the method (Barba et al., 2005). The first two difficulties have been successfully overcome by the 
application of the fast multipole method (Carrier et al., 1988) and by a variety of viscous schemes available in the 
literature (Barba et al., 2005), respectively. The third problem may be dealt with by the use of either global field 
interpolation methods, which are based on either radial basis function collocation schemes or techniques that use 
approximate solutions to the reverse heat equation, or remeshing schemes (Barba and Rossi, 2010).  

Despite the tremendous development that the mesh-free vortex method has recently achieved, the numerical 
implementation of the wall boundary conditions is currently under intense investigation, since it is intimately connected 
to the vorticity generation process in the vicinity of the body surface. In this paper we describe an efficient two-
dimensional vortex method algorithm, with emphasis on a new model for the vortex creation near the wall surface that 
increases the accuracy of the simultaneous implementation of the no-slip and the no-penetration boundary conditions. 
We use gaussian vortex blobs, which turn the method second-order accurate in space, and we integrate the Lagrangian 
motion of the blobs using the Adams-Bashforth second-order time-marching scheme, which turns the method second-



Proceedings of ENCIT 2012           14th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2012 by ABCM               November 18-22, 2012, Rio de Janeiro, RJ, Brazil 

order accurate in time. We employ the Adaptive Fast Multipole Method (Carrier et al., 1988) to calculate the induced 
velocities and the Corrected Core-Spreading Method (Rossi, 1996, 1997) to simulate the vorticity diffusion in the 
boundary layer and wake. The algorithm is tested against the well-known two-dimensional, incompressible boundary-
layer flow over a flat plate. Next, we briefly describe the vortex method and some sample results compared with the 
Blasius solution for a flat plate. 

 
2. VORTEX METHOD 
 

The vortex method relies on the numerical discretization of the vorticity field by a linear combination of vortex 
blobs (or simply vortices) that move with the local flow velocity (Chorin, 1973; Leonard, 1980). The motion of these 
blobs is governed by the vorticity transport equation, which can be written, for two-dimensional incompressible flow, as  
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where ω(x,t) is the vorticity field at a point x in space and time t, and ν is the fluid’s kinematic viscosity. This vorticity 
field is approximated by a superposition of Nv vortex blobs with a Gaussian basis function given by 
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where Γi is the strength, σi is the core radius and xi is the position vector of vortex i, with 1 ≤ i ≤ Nv. For the external 
flow around a body of characteristic length c, immersed in a flow with a freestream velocity U∞ = Ui at infinity, where i 
is the unit vector in the x direction and U is freestream speed, vortex blobs are generated in the neighborhood of the 
body surface Sb. These blobs must satisfy the no-slip and the no-penetration boundary conditions, and they move in a 
Lagrangian manner to approximate the solution of Eq. (1). The velocity field uv,i associated to Eq. (2) at which vortex i 
moves may be written as 
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whereas vortex i simultaneously undergoes viscous diffusion according to  
 

2
id
dt
σ

ν= . (3b)  

 

Equations (3) form a dynamical system of ordinary differential equations that approximates the solution to Eq. (1).  
The body is discretized using the panel method (Katz and Plotkin, 2001). Hence, for the potential flow that 

represents the body contribution, the body velocity field ub can be written as the gradient of the velocity potential φ(x,t) 
according to ub ≡ ∇φ. For incompressible flow, the field φ(x,t) is the solution to the following boundary-value problem 
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In Eqs. (4), V is the fluid domain and n is a unit vector normal to Sb. Using Green’s identity (Katz and Plotkin, 2001), it 
can be shown that the solution to the boundary-value problem defined by Eqs. (4) is  
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where γ(s) is a vorticity distribution and λ(s) is a source distribution on the body surface, s is a coordinate along Sb, and 
φ∞ = Ux is the velocity potential associated to the uniform freestream flow. 

The solution expressed by Eq. (5) is obtained using the panel method with λ(s) = 0 and γ(s) given by a piecewise-
continuous linear-vortex panel method, where the body geometry is divided up into N flat panels, each one with length 
Δsi. The middle point of the panel is the control point, where the boundary conditions are enforced, and the endpoints 
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are the panel nodes. We assume that the vortex singularity distribution is linear over the panel, and the values γi of this 
function at the nodes are the unknowns. The γi’s are calculated in order to satisfy the wall boundary conditions.  

The total velocity vector ui induced at vortex i has three components: the uniform flow at infinity, U∞; the velocity 
uv,i induced by the entire cloud of M vortices present in the flow at time t, given by Eq. (3a); and the velocity ub,i 
induced by the N panels that discretize the body. Hence, we may write that each vortex blob i moves according to  
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Integration of Eq. (6) over a time step Δt using the 2nd-order Adams-Bashforth scheme yields 
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The evaluation of the velocity component uv,i in Eq. (7) for a cloud of M vortices using direct calculation based on 

Eq. (3a) requires M2 operations. Since this computational cost is too high, we use the Adaptive Fast Multipole Method 
(Carrier et al., 1988) to calculate the induced velocities. This is a box-box multipole expansion method, which groups 
vortices into boxes of different sizes, according to the number of particles in the box. Direct vortex-vortex calculations 
are performed within the same box, whereas box-box calculations are carried out according to a multipole expansion in 
terms of the distance between box centers. This algorithm reduces the operation count to order M.  

To simulate the diffusive transport of vorticity we employ the Corrected Core-Spreading Method (CCSM) proposed 
by Rossi (1996) and implemented using the merging algorithm also proposed by Rossi (1997). This method is based on 
the integration of Eq. (3b), which predicts that the vortex core radius grows in time according to 

 
2 tσ νΔ = Δ . (8) 

 
The CCSM limits the core radius to fall within the range ll ≤≤σα , where l is the largest core radius in the 

simulation and 10 ≤<α . These two parameters determine the frequency of the spatial refinement. Hence, when the 
core radius of a vortex with strength Γi reaches a value greater than or equal to l, it is replaced four new vortices with 
strength Γi/4 and radius lα . These four new vortices are positioned at 90º from each other and at a distance r from the 
center of the original vortex, where r is calculated from 212 )1(2 ασ −=r . These equations guarantee that the first- and 
second-order moments are conserved and also allow overlapping among the four cores to be imposed. This method is 
deterministic, easily implemented and completely mesh-free. 

 
3. NEW MODEL FOR THE BOUNDARY CONDITIONS AT THE WALL 

 
The no-slip and the no-penetration boundary conditions on the body surface are simultaneously imposed through a 

model for the calculation of the instantaneous vorticity flux on the wall. This model is based upon the superposition of 
two vortex sheets (Santiago, 2008): one distributed over the body surface, represented by the linear vortex panels with 
strength kk sΔγ , where the mean vorticity of panel k is 2/)( 1++= kkk γγγ ; and the other, represented by a layer of 
nascent vortices with strength Γk positioned a distance ε off the wall and along the panels. The vorticity flux that 
diffuses from the wall into the fluid is determined by imposing explicitly the no-slip and the no-penetration boundary 
conditions at the panel control points, in addition to an equation for the conservation of circulation (Kelvin’s theorem). 
These equations provide a linear system of algebraic equations for the unknown kγ  and Γk. The linear system of 
algebraic equations is comprised of (2N + 1) equations and (2N + 1) unknowns, that is,  
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The elements of the matrices Ajk e Bjk depend only on the position of the control points and the location where the 

nascent vortices are generated and, therefore, are calculated only once. The vector bj(t) is updated every time step. As 
soon as these quantities are determined, N × (L +1) new vortices are generated into the flow such that they are now free 
to convect and diffuse, as described in section 2, where N vortices have strength kk lΔγ  and (N × L) vortices have 
strength Γk/L.  
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4. RESULTS AND DISCUSSION 
 

We now present sample results for our vortex method applied to the steady incompressible boundary layer flow 
over a flat plate that is parallel to the freestream flow. The plate has thickness of 2% with respect to its length c. In 
Santos (2010) systematic studies were carried in order to evaluate the performance of the vortex method with respect to 
the numerical parameters that are intrinsic to the algorithm and to determine their efficient range of values. Based on 
these studies and in order to produce relatively coarse simulations to highlight the potential of the method, we have 
chosen the following set of values for the numerical parameters used in the simulations presented here: 70.0=α , the 
parameter that controls the vortex splitting in the CCSM; 70.0=σh , the parameter that prescribes the initial ratio of 
the spacing between nascent vortices to the core radius, which guarantees core overlapping; N = 50, the number of 
panels for the body discretization; 02.0=Δτ , the dimensionless time step. The Reynolds number is Re ≡ Uc/ν = 103. 

Results for the u/U-velocity profiles versus η at two positions along the plate, 25.0/ =cx  and 75.0/ =cx , are 
presented in Figs. 1 and 2 at 5.4=τ  and compared to the exact Blasius solution. The similarity variable η is defined as 

21))//()(/( cxRecy=η . These chordwise stations are far enough from the leading and trailing edges of the plate, where 
the Blasius solution is no longer valid. The results show good agreement between the numerical results and the Blasius 
solution at 25.0/ =cx . However, there is some discrepancy in the middle region of the profile at 75.0/ =cx , which 
may be attributed to some numerical diffusion coming from the CCSM and to some lack of refinement of N and Δτ. 
However, the main result that needs to be emphasized is the fact that the boundary conditions are exactly satisfied on 
the plate, as shown in Figs. 1 and 2, which indicates that the flow near the solid wall is calculated very accurately. This 
is the most important contribution presented here. As a consequence, the shear stress at the plate is also well calculated, 
as one can see from the derivative of the velocity profile at 0=η  for these two chordwise stations. 

 

                    
                   Figure 1. Velocity profile at 25.0=cx .                         Figure 2. Velocity profile at 75.0=cx . 
 
5. CONCLUSIONS 

 
A new formulation for the wall boundary conditions within the lagrangian vortex method is described and some 

sample results are presented in this paper. Numerical simulations are carried out for the flow around a flat plate and 
velocity profiles in the freestream direction at two chordwise stations are compared to Blasius solution. The results 
show good agreement mainly in the wall region, even for the relatively coarse simulations shown here. The velocity 
profiles show that the wall boundary conditions are exactly satisfied at the plate and the derivative of the velocity 
profile, which allows the shear stress at the plate to be calculated, is well calculated. 

The results described in this paper indicate that the algorithm has enormous potential to simulate external two-
dimensional flows around bluff bodies. The wall model proposed may be extended to three-dimensional flows. 
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