
Proceedings of ENCIT 2012          14th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2012 by ABCM              November 18-22, 2012, Rio de Janeiro, RJ, Brazil 
  

  

AN A PRIORI UPPER BOUND ESTIMATE FOR STEADY-STATE 
CONDUCTION HEAT TRANSFER PROBLEMS WITH A LINEAR 

RELATIONSHIP BETWEEN TEMPERATURE AND CONDUCTIVITY 
  

Wendel Fonseca da Silva, wendel.silva@csn.com.br 
Eduardo D. Corrêa, edudc2000@gmail.com  
Rogério M. Saldanha da Gama, rsggama@gmail.com 
Mechanical Engineering Graduate Program - FEM, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, 
20550-013, RJ, Brazil 
 
Maria Laura Martins-Costa, laura@mec.uff.br  
Laboratory of Theoretical and Applied Mechanics (LMTA), Mechanical Engineering Program (TEM-PGMEC) 
Universidade Federal Fluminense, Rua Passo da Pátria, 156, 24210-240 Niterói, RJ, Brazil 
 
Abstract. This paper presents an a priori upper bound estimate for the steady-state temperature distribution in a body with a 
temperature-dependent thermal conductivity. The discussion is carried out assuming linear boundary conditions (Newton law of 
cooling) and a thermal conductivity linearly dependent on the temperature. The estimates consist of a powerful result that, 
depending on the objectives, avoids the necessity of an expensive numerical simulation of a nonlinear heat transfer problem and 
may be more effective than usual approximations (in which heat sources and thermal conductivities are assumed constant). 
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1. INTRODUCTION   
 

Conduction heat transfer problems are usually simulated assuming temperature independent thermal conductivity. 
Such an approximation is carried out in order to simplify the simulation of the considered problems. Nevertheless, even 
taking into account the dependence of the thermal conductivity on the temperature, it is possible to estimate “a priori” 
an upper bound for the temperature field, without requiring a complete simulation of the conduction heat transfer 
process. Sometimes the simulation of a complex nonlinear heat transfer problem is carried out only for verifying if the 
maximum temperature remains lower than a given bound. In such cases the simulation is no longer required if an upper 
bound estimate for the solution is already available.  

Temperature dependent thermal conductivity is present in many problems with engineering relevance. For instance, 
concerning carbon nanotubes (known for their high thermal conductivities), the temperature-dependent thermal 
conductivity of crystalline ropes of single-walled carbon nanotubes decreases smoothly with decreasing temperature, 
and displays a linear temperature dependence below 30 K (Hone et al., 1999). Also, when thermal conductivity is 
considered as a function of temperature for a peaking behavior of the thermal conductivity is verified, before falling off 
at higher temperatures (Osman and Srivastava, 2001). Thermal properties play an important role in porous silicon, 
specially regarding its applications in optoelectronics. Geseley et al. (1997) verified that the thermal conductivity 
increases with temperature increase. Another important material presenting interest in optoelectronic and electronic 
applications is zinc oxide. The maximum thermal conductivities of the polycrystalline zinc oxide occur at about 60 K 
and their values are almost an order of magnitude lower than bulk ZnO (Alvarez-Quintana et al., 2010). 

The main objective of this work is to provide an a priori upper bound estimate for the temperature distribution in 
homogeneous bodies with temperature-dependent thermal conductivity, subjected to a linear boundary condition 
(Newton’s law of cooling). This a priori estimate may be useful, for instance, when the main goal is to ensure that a 
(maximum admissible) temperature will not be reached. It is important to note that upper bounds for problems subjected 
to non-linear boundary conditions (conduction/radiation heat transfer) for constant thermal conductivity have already 
been proposed (Saldanha da Gama, 1997; Saldanha da Gama, 2000).  
 
2. MECHANICAL MODELING   

 
In this work the thermal conductivity is assumed as a linear function of the temperature as follows 
 
k = 1+!T( )k0 , with k0 > 0, k0 and ! constants  (1) 

 
Equation (1) represents a first approximation for problems with temperature dependent thermal conductivity and 

makes sense if, and only if, 1+!T > 0  everywhere (Incropera and Dewitt, 1996). 
The classical steady-state conduction heat transfer process in a rigid and opaque body at rest, represented by the 

bounded open set !  with boundary !" , subjected to a linear boundary condition is mathematically described by 
(Slattery, 1999; Incropera and Dewitt, 1996) 
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div k gradT!" #$+ !q = 0               in %

&k grad T 'n = h (T &T
(

)        on )%
 (2) 

 
in which n is the unit outward normal, k is the thermal conductivity, !q  is the internal heat generation (per unit time and 
unit volume), T

!
 is the environment temperature (constant and satisfying  1+!T

!
> 0 ), h is the convection heat transfer 

coefficient (constant and positive-valued) and  T is the temperature (unknown). The conductivity k is a linear function 
of the temperature T, given by equation (1). 
 The mathematical problem studied in this paper is obtained combining equations (1) and (2), in other words, the 
steady-state conduction heat transfer process mathematically represented by 
 

div 1+!T( )k0 gradT!
"

#
$+ !q = 0  in %

& k gradT( ) 'n = h (T &T
(

)        on )%
 (3) 

 
where the heat generation !q  is a given nonnegative-valued function. Since k must be positive-valued everywhere, in 
order to preserve the physical meaning, Eq. (3) must be considered with the constraint 1+!T > 0 . 
 In order to work with an unconstrained description, equation (1) is now replaced by the following one 

 
k = k +! T !TREF , with k > 0 and ! > 0  (4) 

 
in which k  is a positive constant, TREF  is a temperature of reference, !  is a positive constant and “ “ denotes the 

“absolute value of”.  It is easy to see that when k is given by equation (4) it is always positive-valued. Since in any 
actual heat transfer problem the temperature is considered within a given range, equation (4) may represent equation (1) 
for any real situation.  
 
3. THE KIRCHHOFF TRANSFORM   

 
The Kirchhoff transform may be defined in terms of the variable ! as follows (Arpaci, 1966)  
 

! = f̂ (T ) = k̂ "( )TREF

T
! d "

So       ! = f̂ (T ) = k +# " "TREF#
$

%
&TREF

T
! d " = k T "TREF( )+ #2 T "TREF( ) T "TREF

and      grad! = k gradT ' div grad!( )+ !q = 0 in (

 (5) 

 
The inverse of the above Kirchhoff transform and the boundary condition can be written as 
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 (6) 

 
4. ESTIMATING AN UPPER BOUND FOR THE TEMPERATURE T  

 
Combining the last equation of Eq. (5) with the last one of Eq. (6) it comes that 
 

div grad!( )+ !q = 0                                                                       in !
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The field Ψ is defined below, where !"  is a conveniently chosen set given by 
 
div grad!( )+ sup

"

!q#$ %&= 0 in "', with "("'  (8) 

 
Thus, 
 
div grad ! !"( )#
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%
&' 0                                                                                                in (
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Since div grad ! !"( )#

$
%
&' 0 in ( , employing the divergence theorem, for any subset ! "#  with boundary !" , 

it comes that  
 

grad ! !"( ) #n dS$%& ' 0  (10) 

 
ensuring that  the supremum of ! !"( )  in !  coincides with the supremum of ! !"( )  on !" .  In addition, it may be 

concluded that sup
!

! "#( ) = sup
$!

! "#( ) = sup
$!+

! "#( ) , in which the nonempty subset !"+ #!"  is the following one: 

!"+ # x $!"  such that grad ! %&( ) 'n ( 0{ } . The boundary condition gives rise to the following inequality (Taylor, 

1958) 
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Therefore,  
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In other words, once Ψ is chosen, there is an a priori upper bound estimate for ω (since the supremum of ω is 

greater than or equal to ω). 
 In addition, from the inverse of the Kirchhoff transform, it comes that  
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So, taking Eq. (12) into account, it may be concluded that  
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where ! =T
!
"TREF +

1
h
sup
#$%

grad& . Since, in the body ! , T is less than (or equal to) its supremum in ! , inequality 

(14) represents an a priori upper bound estimate for T. 
 
5. THE CHOICES FOR THE FIELD Ψ  

 
Since Ψ is any solution of Eq. (8), there are an infinite number of possible choices for Ψ. For instance, the four 

ones stated below (represented in terms of the usual rectangular Cartesian coordinates) 
 

! = "
Cx 2

2
, ! = "

Cz 2

2
, ! = "

C x 2 + y 2( )
4

and ! = "
C x 2 + y 2 + z 2( )

6
  (15) 

 
in which  C = sup

!

!q"# $%= constant . 

Each of these choices may give rise to a different upper bound estimate, even for a same !" . Supposing that !"  is 
given by !1

"  or by !2
"  where  

 
!1

" # (x , y , z ) such that x 2 + y 2 < R 2 and $ L < z < L{ }
!2

" # (x , y , z ) such that $ L < x < L, $ L < y < L and $ L < z < L{ }
  (16) 

 
The results presented in table 1 illustrate the choices above.  

 

Table 1.  Some results for different choices for ! , with !" given by Eq. (16). 
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6. FINAL REMARKS 

 
This paper presented an a priori upper bound estimate for the steady-state temperature distribution for bodies in 

which there exits a linear relationship between the thermal conductivity and the temperature. In other words, for the 
class of problems considered here, it is possible to establish, without any simulation (exact or numerical) a value that is 
greater than (or equal to) the temperature in any point of the body. 

Since the choice of the set !"  and of the function !  influences the estimates, they must be conveniently chosen in 
order to minimize the difference sup

!"

#$% &'( inf
!"

#$% &'  as well as sup
!"#

grad$ .  
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