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Abstract. This paper provides an error assessment of the Upwind Generalized Integral Transform Technique (UDS-GITT)

for solving the nonlinear one-dimensional Burgers’ equation. In this technique, the advective terms are approximated

using an upwind discretization scheme (UDS) and the transformation of the problem is carried-out using the Generalized

Integral Transform Technique (GITT). An average square error is proposed and a table showing the errors for many cases

is displayed.
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1. NOMENCLATURE
ξ spatial coordinate
τ time
Θ temperature
θ filtered temperature
θ̄ transformed filtered temperature

Pe Péclet number
U velocity

α, β velocity parameters
F filter function
N norm

Greek Symbols
Λ discrete derivative
µ eigenvalues
ψ eigenfunctions
ε mean square error
δ discrete step-size
Λ discrete derivative

Subscripts
i, j, k GITT indexes

2. INTRODUCTION

The majority of numerical routines are based on discretizing the physical domain and approximating governing equa-
tion within the smaller sub-regions created by the discretization. A more recent methodology that combined ideas from
numerical methods and analytical approaches, has been gaining popularity over the last few decades. This analytical-
numerical methodology is the so-called Generalized Integral Transform Technique (GITT) (Cotta, 1990). This method
has been demonstrated to serve as an effective instrument for solving advection-diffusion problems. Some of the most
recent applications of the Generalized Integral Transform Technique include convective heat transfer in flows within mi-
crochannels (Sphaier, 2012; Castellões et al., 2010), and the solution of general convection-diffusion problems using
a unified integral transformation scheme (Sphaier et al., 2011). Although both dicretization-based methodologies and
eigenfunction-expansion solutions have been effectively applied to a variety of advection-diffusion problems, combined
solution algorithms that utilize both types of methodologies have been used sparingly. GITT solutions have notable suc-
cess rate when applied to diffusion problems. The method has also been applied to convective problems, but when advec-
tion is dominant a worse performance is generally seen. Since its common to use upwind approximation schemes (UDS)
for handling advection transport terms, the idea of employing a hybrid methodology becomes particularly interesting for
solving advective-dominant problems. This idea has been employed in recent works (Chalhub et al., 2012b,a); neverthe-
less, an objective criteria for assessing the error of the combined UDS-GITT solutions has not been addressed. Under
this scenario, this work proposes a criteria for assessing the global error of a UDS-GITT solution of a one-dimensional
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nonlinear convective heat transfer problem.

3. PROBLEM FORMULATION AND SOLUTION METHODOLOGY

The problem considered in this study is based on a one-dimensional non-linear formulation of Burgers’ equation for
convective heat transfer, given by the following equations:

∂Θ(ξ, τ)

∂τ
+ U(Θ)

∂Θ(ξ, τ)

∂ξ
=

1

Pe

∂2Θ(ξ, τ)

∂ξ2
, (1)

Θ(0, τ) = 1, (2)(
∂Θ

∂ξ

)
ξ=1

= 0, (3)

Θ(ξ, 0) = 0, (4)

where the velocity depends on the temperature field through:

U(Θ) = α+ βΘ (5)

As usual in integral transform solutions, filtering is employed for removing non-homogeneous boundary terms. The
solution separation Θ(ξ, τ) = θ(ξ, τ) + F (ξ) is proposed, where the filter problem is chosen from a linearized steady
version of the problem with similar boundary conditions:

dF

dξ
=

1

Pe

d2F

dξ2
(6)

F (0) = 1, (7)

F ′(1) = 0 (8)

which yields a constant solution F (ξ) = 1. With the solution separation, the following filtered system is obtained:

∂θ

∂τ
+
(
α+ β (θ + F )

) ∂θ
∂ξ

=
1

Pe

∂2θ

∂ξ2
, (9)

θ(ξ, 0) = −F (ξ), (10)

θ(0, τ) = 0, (11)(
∂θ

∂ξ

)
ξ=1

= 0, (12)

The filtered problem is the transformed using and orthogonal eigenfunctions basis. Due to the nature of the selected
problem, the simple one-dimensional Helmholtz problem is employed for providing the eigenfunctions:

Ψ′′(ξ) + µ2 Ψ(ξ) = 0, (13)

Ψ(0) = 0, (14)

Ψ′(1) + Bi Ψ(1) = 0, (15)
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This eigenproblem, has the simple solution:

Ψi(ξ) = sin(µi ξ), (16)

µi = (i− 1/2)π, (17)

Ni =

∫ 1

0

Ψ2
i (ξ) dξ =

1

2
, (18)

for i = 1, 2, . . . . Once the eigenfunctions have been calculated, the problem is transformed according to the following
integral transformation pair:

Inversion → θ =

∞∑
i=1

θ̄i(τ) Ψi(ξ)

Ni
, (19)

Transform → θ̄i(τ) =

∫ 1

0

θ(ξ, τ) Ψi(ξ) dξ, (20)

3.1 Traditional Solution Approach

Using the solution arising from the previous eigenproblem, the transformation of the original problem is carried-
out by operating equation (9), and the associated initial condition, with the integral operator

∫ 1

0
•Ψi(ξ) dξ, employing

the associated boundary conditions, eigenproblem information, and the inversion formula. This leads to the following
transformed system:

dθ̄i
dτ

+

∞∑
j=1

Ai,j θ̄j +

∞∑
j=1

∞∑
k=1

Bi,j,k θ̄j θ̄k = −µ
2
i

Pe
θ̄i, (21)

θ̄i(0) = f̄∗i , (22)

for i = 1, 2, . . . ,∞. The involved integral coefficients are given by:

Ai,j =
1

Nj

∫ 1

0

(α+ β F (ξ)) Ψi(ξ) Ψ′j(ξ) dξ, (23a)

Bi,j,k =
β

Nj Nk

∫ 1

0

Ψi(ξ) Ψj(ξ) Ψ′k(ξ) dξ, (23b)

f̄∗i = −
∫ 1

0

F (ξ) Ψi(ξ) dξ. (23c)

where, as previously mentioned, the double summation involving the coefficient Bi,j,k arises from an additional sub-
stitution of the inversion formula into the velocity profile due to the non-linearity of the problem. The solution of the
transformed potentials is then obtained by truncating the infinite system representation (21) to a finite order imax and
employing a commercially or publicly available dedicated ODE solver. In this study, Mathematica’s function NDSolve
was employed for this purpose.

3.2 Proposed Solution Scheme

The proposed solution scheme involves employing an upwind approximation formula to the advective term:

U(Θ)
∂θ

∂ξ
≈ U(Θ) Λ(θ, δ) = U(Θ)

f(ξ)− f(ξ − δ)
δ

. (24)
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Based on the above approximation, the modified transformed system is given by the following equation:

dθ̄i
dτ

+

∞∑
j=1

A+
i,j θ̄j +

∞∑
k=1

∞∑
k=1

B+
i,j,k θ̄j θ̄k = −µ

2
i

Pe
θ̄i + p̄+i (25)

and the initial condition remains unchanged. The modified integral coefficients are given by:

A+
i,j =

1

Nj

(∫ 1

0

(1 + β F (ξ)) Ψi(ξ) Λ(Ψj , δ) dξ + β

∫ 1

0

Λ(F, δ) Ψi(ξ) Ψj(ξ) dξ

)
, (26a)

B+
i,j,k =

β

Nj Nk

∫ 1

0

Ψi(ξ) Ψj(ξ) Λ(Ψk, δ) dξ, (26b)

p̄+i = β

∫ 1

0

F (ξ) Λ(F, δ) Ψi(ξ) dξ. (26c)

Finally, the infinite system representation given by (25) is truncated to a finite order imax and numerically solved using a
dedicated ODE solver.

4. RESULTS AND DISCUSSION

In order to assess the error of the different solutions an average square error, calculated based on a converged solution
is defined:

ε =

√∫ 1

0

(Θconv(ξ, τ)−Θ(ξ, τ, nmax, δ))2 dξ (27)

where Θconv(ξ, τ) represents a converged solutions, whereas Θ(ξ, τ, nmax, δ) represents a solution calculated with a given
truncation order and an upwind approximation parameter. The equivalent purely-GITT solution does not depend on the
δ-parameter and can be simply given by Θ(ξ, τ, nmax).

The following table present the average errors for many two nonlinear cases (α = 0.9, β = 0.1 and α = 0.1, β = 0.9)
for Bi = 0 and Pe = 1000 and times τ = 0.5 and τ = 1. It is highlighted in bold the minimum error for each truncation
order. It can be clearly seen that the optimum size of δ reduces with the increase of the truncation order. Also, the rise
of the nonlinearity (β) requires of a higher δ in order to achieve the best error value. For the case where the front wave
velocity is higher α = 0.9 the increase in time requires a higher δ value.

5. CONCLUSIONS

This paper provides an error assessment of the Upwind Generalized Integral Transform Technique (UDS-GITT) for
solving the nonlinear one-dimensional Burgers’ equation. The results showed a good performance if a proper step-size (δ)
is chosen. It can be clearly seen that the δ parameter must depend on the truncation order and the time for each case. As
a result, an important suggestion for further research involves the determination of the optimum value of δ. One can even
propose a variable d, which is function of x, in order to adapt the approach locally inside the domain. This proposition is
similar to the one used with the flux limiters introduced by TVD (Total Variation Diminishing) schemes.
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Table 1. Variation of the average square error with different nonlinearity cases, times and truncation orders for Bi = 0
and Pe = 1000.

nmax

δ 5 10 15 20 30 35 40 45 50
τ = 0.5 GITT 0.1076 0.0510 0.0244 0.0122 0.0033 0.0019 0.0013 0.0009 0.0007
α = 0.9 0.0001 0.108 0.051 0.025 0.013 0.004 0.003 0.003 0.003 0.002
β = 0.1 0.001 0.109 0.053 0.029 0.021 0.017 0.016 0.016 0.016 0.015

0.005 0.112 0.066 0.054 0.052 0.051 0.051 0.050 0.050 0.050
0.01 0.118 0.082 0.077 0.076 0.075 0.075 0.075 0.075 0.075
0.05 0.158 0.151 0.151 0.151 0.151 0.151 0.151 0.151 0.151
0.1 0.194 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193
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0.01 0.123 0.077 0.074 0.075 0.076 0.076 0.076 0.076 0.076
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α = 0.1 0.0001 0.163 0.188 0.181 0.153 0.095 0.081 0.060 0.051 0.045
β = 0.9 0.001 0.163 0.183 0.169 0.122 0.087 0.083 0.084 0.081 0.083

0.005 0.161 0.167 0.131 0.133 0.158 0.166 0.170 0.173 0.175
0.01 0.160 0.158 0.148 0.171 0.199 0.203 0.205 0.206 0.207
0.05 0.157 0.191 0.225 0.232 0.229 0.225 0.221 0.219 0.218
0.1 0.160 0.220 0.224 0.207 0.206 0.207 0.206 0.205 0.205

τ = 1 GITT 0.291 0.349 0.240 0.176 0.102 0.078 0.064 0.053 0.043
α = 0.1 0.0001 0.290 0.343 0.232 0.167 0.097 0.075 0.062 0.053 0.045
β = 0.9 0.001 0.286 0.296 0.185 0.141 0.127 0.131 0.135 0.138 0.141

0.005 0.271 0.205 0.209 0.232 0.247 0.252 0.258 0.261 0.263
0.01 0.257 0.215 0.266 0.284 0.301 0.306 0.308 0.309 0.309
0.05 0.250 0.342 0.353 0.354 0.351 0.348 0.345 0.343 0.343
0.1 0.286 0.348 0.343 0.328 0.326 0.326 0.325 0.324 0.324
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