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Abstract. A hyperbolic model, that admits discontinuities in addition to smooth or classical solutions, describes the 
radial motion and decay of a pollutant immersed in a polytropic atmosphere, resulting from mass and momentum 
conservation for the air-pollutant mixture and the pollutant mass balance. The numerical approximation combines 
Glimm's method (requiring the solution of a Riemann problem for each two consecutive steps) with an operator 
splitting technique. Some representative results considering a spherical shell configuration are presented.  
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1. INTRODUCTION 
 

The study of transport phenomena in an environment representing an air-pollutant mixture is justified by the 
increasingly conscious behavior concerning pollution impact in quotidian and future life. This work employs a 
preliminary hyperbolic model, in which the atmosphere is treated as an ideal polytropic gas (since meteorological 
phenomena generally assume adiabatic processes (Jacobson, 2000)), to describe the radial transport of a pollutant in the 
atmosphere. Assuming the pollutant mass negligible with respect to the air mass, the mathematical representation 
consists of a nonlinear non-homogeneous system of hyperbolic partial differential equations of mass and momentum 
balances for the air and the pollutant mass balance that admits discontinuous solutions, in addition to classical smooth 
ones. The numerical methodology used in this work consists of three distinct ingredients, namely an operator splitting 
technique, Glimm's scheme and the solution of the associated Riemann problem (see Martins-Costa and Saldanha da 
Gama, 2006, and references therein).  

Riemann problems are may be used to solve systems modeling distinct problems as the evolution of a fluid flow in 
a nozzle with discontinuous cross-section (Goatin and Le Floch, 2004), the flow of compressible gas in a porous bed, 
focusing on the solution of a shock-tube problem that also includes a discontinuous jump in the porosity of the bed 
(Lowe, 2005), hyperelastic solid mechanics (Miller, 2003), or the traffic on a road with points of entry and exit 
(Mercier, 2009), in which the Riemann problem is solved for the junctions.  

Glimm’s scheme is implemented by assembling a previously chosen number of Riemann problems to advance in 
time. Ruan et al. (2008) studied blood flow in a vessel, modeled as an initial-boundary-value problem of a system of 
hyperbolic, partial-differential equations. Assuming appropriate simplifying hypotheses, they found a global solution 
using Glimm’s finite-difference scheme. Hong and Su (2010) employed a generalized Glimm scheme to find weak 
solutions of the initial-boundary value problem of hyperbolic systems, construct approximate solutions of Riemann 
problems, obtaining stable and consistent schemes.   
 
2. PROBLEM STATEMENT AND SIMULATION  
 

In this article the transport of a pollutant in the air is described combining mass and linear momentum conservation 
for the air-pollutant mixture with mass balance for the pollutant and assuming the mass transfer caused by an advection-
diffusion process of the pollutant (A constituent) in the air (supposed as an ideal gas) and the existence of a very small 
quantity of the pollutant in the mixture at any time instant, with the pollutant mass negligible with respect to the air 
mass, so that the mass and linear momentum balance equations for the mixture can be approximated by mass and linear 
momentum balances for the air. This simplifying assumption allows defining ρ as the air mass density, v as its velocity, 
and p and g as the pressure and specific body force acting on the air. The concentration of the constituent A in the 
mixture, !A !! , is defined as the mass fraction of this constituent in the mixture (! ! "A / " ). Besides, D  represents 
the diffusion coefficient of the constituent A in the mixture and rA, the rate of production of the constituent A. This latter 
term, accounting for generation or destruction of pollutant, which may be caused by chemical reactions, will be 
described by the following constitutive assumption rA = !!" , where α  is a constant. Some additional simplifying 
assumptions are: the pressure is function solely of the mass density p = p̂ (!)  with p '(!) > 0  being its derivative with 
respect to ρ, the flow is reduced to a radial flow through the spherical shell, so that v=ver; besides both gravitational 
effects are omitted and diffusion effects are neglected with respect to advection ones. So, Eq. (1a) is reduced to Eq. (1b) 



Proceedings of ENCIT 2012         14th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2012 by ABCM                 October 18-22, 2012, Rio de Janeiro, RJ, Brazil 

 
!!
!t

+"# (!v) = 0

!(!v)
!t

+"# (!vv) = $"p + !g

!(!")
!t

+"# (!"v) ="# (!D  "!)+ rA

                             

!!
!t

+
!(!v )
!r

= "
2!v
r

!
!t

(!v )+ !
!r

(!v 2 + p ) = " 2!v 2

r
!
!t

(!"A )+ !
!r

(!"v ) = "
2!v!A

r
"!"  

#

$

%
%
%

&

%
%
%

 (1) 

 
The numerical simulation employs a methodology developed for problems with discontinuous solutions that 

consists in treating the non-homogeneous problem sequentially, by combining Glimm’s scheme, applied to the 
homogeneous portion (I) and an operator splitting technique to approximate the time-evolution part (II), as follows 
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In brief, initial approximations for the fields ρ, ρv and ρω are obtained with Glimm’s scheme, implemented by 

assembling a previously chosen number of Riemann problems to advance from time n to time n+1 (Smoller, 1983; 
John, 1982). In the sequence, the “prediction” is “corrected”: the results at time n+1 are obtained by solving the above 
system (II), using the results obtained in (I) as initial estimates, with the same time step. The methodology, described in 
details in Martins-Costa and Saldanha da Gama (2006), has been previously applied to a homogeneous system (Martins-
Costa and Saldanha da Gama, 2003) and to non-homogeneous systems of two non-linear equations describing flow 
though unsaturated porous media (Martins-Costa and Saldanha da Gama, 2003). 
 
3. RESULTS  
 

Four different problems are presented, in which the effects of the pollutant decay coefficient α and the spherical 
shell curvature are considered. In all these problems, with the same initial data are assumed, being given by a constant 
mass density ρ, a step function for the velocity (with vL<vR) and a step function for the pollutant concentration per unit 
volume (with ρωL>ρωR).  

Figures 1 to 4 contain four distinct figures; six lines and three columns of graphs compose the top left set, each line 
representing a distinct time instant (the first one being the initial condition), and each a distinct variable; the vertical 
axis corresponds to the numerical value assumed by the variables (ρ, v and ρω), the horizontal one being the spatial 
coordinate, with the internal radius placed at the left-hand side and the external radius at the right one. The behavior of 
ρ, ρv and ρω is also depicted in the 3-D diagrams, represented on the top right (ρ), bottom left (v) and bottom right 
(ρω). In all 3-D diagrams the smallest values are depicted in dark blue while the highest are in dark brown. 

The effects of the decay coefficient α may be noted by comparing figures 1 (α=0.01) and 2 (α=10), for ri= 1 and 
re=2; and figures 3 (α=0.01) and 4 (α=10) , for ri= 0.01 and re=1.01, which show a decay of the pollutant concentration 
along the time as α increases (rA acting as a pollutant source). Comparing figures 1 and 3 and 2 and 4 the effect of the 
spherical shell curvature may be noted, since in all cases a unitary thickness is considered. As the curvature increases, 
the effect of the shocks decreases, in other words, a dissipative effect may be associated to the curvature increase.  
 



Proceedings of ENCIT 2012         14th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2012 by ABCM              November 18-22, 2012, Rio de Janeiro, RJ, Brazil 
  

 
 

Figure 1. Gas density, velocity and pollutant concentration per unit volume variation with position – considering 
! = 0.01  and a spherical shell with ri =1  and re = 2 . 

 
Figure 2. Gas density, velocity and pollutant concentration per unit volume variation with position – considering ! =10  

and a spherical shell with ri =1  and re = 2 . 
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Figure 3. Gas density, velocity and pollutant concentration per unit volume variation with position – considering 

! = 0.01  and a spherical shell with ri = 0.01  and re =1.001 . 
 

 
Figure 4. Gas density, velocity and pollutant concentration per unit volume variation with position – considering ! =10  

and a spherical shell with ri = 0.01  and re =1.001 . 
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4. FINAL REMARKS 
 

The numerical methodology presented in this work – combining Glimm's scheme and an operator splitting 
technique to deal with the non-homogeneous portion of the hyperbolic operator – allowed the accurate approximation of 
a nonlinear and non-homogeneous system of three partial differential equations representing mathematically the 
transport of a pollutant in the atmosphere and accounting for the pollutant decay. 

Glimm's method presents no numerical dissipation, preserving shock waves magnitude and position. Besides, when 
compared with other numerical procedures to approximate nonlinear problems, it has lower storage costs and requires 
lower computational effort. 
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