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Abstract. In this problem a hybrid numerical-analytical solution based on the Generalized Integral Transform 
Technique (GITT) is obtained for the hydrodynamically fully developed and thermally developing flows in annular 
ducts for non-Newtonian fluids that follow the power-law rheological model.

 
In this paper, it is employed the bipolar 

coordinate system to map the eccentric annular duct. Therefore, results for the product of the friction factor by the 
Reynolds number were compared with those of a previous contribution and shown excellent agreement. 
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1. INTRODUCTION 

 
Industrial applications in which processing of materials behaving as non-Newtonian fluids are those commonly 

encountered in the chemical, cosmetics, food processing, polymer and petrochemical industries. The petrochemical 
industries are in search of solutions for the velocity and temperature field of the fluid flow with characteristics typically 
non-Newtonian. In these applications, the power-law model can described adequately the rheology of such fluids. 

The developing laminar flow and heat transfer in the annular passages have been investigated by Heaton et al. 
(1964), Feldman et al. (1982), in this latter, it is solved laminar developing flow in eccentric annular ducts using the 
bipolar coordinate system. Others problems were also solved numerically using bipolar coordinates, such as those in the 
work of Heyda (1959). The author determined the Green’s function in bipolar coordinates for a potential flow and 
obtained a solution for the momentum equation. El-Shaarawi et al. (1998) use the bipolar coordinate system for 
determined developing laminar forced convection in eccentric annuli, the author has based the analysis on the work of 
El-Saden (1961), where it was studied heat conduction in an eccentrically hollow, infinitely long cylinder. 

The objective of the present paper is to obtain a hybrid solution through the GITT approach for the fully developed 
flow of non-Newtonian fluids in eccentric annular ducts by using a bipolar coordinate system to map the region of such 
annular duct. Also, it is intend to develop a numerical algorithm to solve the transformed equation. Therefore, the 
numerical results will be confronted with results from the literature (Monteiro et al., 2010). 
 
2. MATHEMATICAL FORMULATION 
 

We consider fully developed laminar flow in the eccentric doubly connected duct geometry. The transformation 
equation from the cylinder coordinate system to this bipolar coordinate system is used to map the duct walls. It was 
considered that the two-dimensional flow is laminar and incompressible and stationary, the fluid follows the rheological 
power-law model, the properties of the fluid are constant and that the duct walls are impermeable and non-slip (Fig. 1). 

 
Figure 1. Geometric configuration of the doubly connected duct analyzed with angular symmetry. 
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The mathematical formulation of the flow problem is given by the momentum conservation equation in the axial 
direction, in dimensionless form, as follows: 
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The boundary condition for the present problem is V 0z = on the surface. Also, the velocity distribution must be 

symmetrical about the x-axis. 
Where, in Eqs. (1) and (2) above the following dimensionless groups were employed: 
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The related transformation equations from the Cartesian coordinate system to this bipolar coordinate system are 

given below: 
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Making the transformation of coordinate systems by using Eqs. (7) to (9) above, we obtain the following equations: 
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In order to obtain the solution of Eq. (10), we rewritten such equation as: 
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(16) 

 
Where the coefficients are defined by: 
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2.1. Solution methodology 
 

The Generalized Integral Transform Technique (GITT) is then employed in the hybrid numerical-analytical solution 
of the problem (Cotta, 1993). For this purpose, the following auxiliary eigenvalue problem is chosen: 
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Equation above can be analytically solved, to yield the eigenfunctions and eigenvalues, respectively as: 
 
( ) cos( ); 1, 1,2,3,...= = − =i i i i iψ ξ µ ξ µ

 
(26,27) 

 
It can be shown that the eigenfunctions, ψi(ξ), obey the following orthogonality property, where Ni is the 

normalization integral: 
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Equations (23) to (25) together with the respective orthogonality properties allow the definition of the integral 

transform pair for the velocity field as: 
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To obtain the resulting system of differential equations for the transformed potentials, ,z iV , the partial differential 

Eq. (16) is multiplied by ψi(ξ), integrated over the domain [0, π] in the ξ-direction, and the inverse formula is employed 
in place of the velocity distribution ( , )zV ξ η , resulting in the following transformed ordinary differential system: 
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where, Gij(η) and Hi(η) are given by: 
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(35-38) 

 

The coefficients Gij(η) and Hi(η) depend on the transformed potentials and vary along η, Eqs. (32) to (34) form an 
infinite nonlinear boundary value problem, which has to be truncated in a sufficiently high order NT, followed by 
computation of the transformed potentials of the velocity field, , ( )z iV η , to within a user prescribed precision goal. For 
the solution of such a system, due to the expected stiff characteristics, specialized subroutines have to be employed such 
as the DVPFD from the IMSL Library (1991). 
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In order to compute the product of the friction factor by the Reynolds number, first it is necessary to calculate the 
average velocity, and then from the introduction of the inverse formula, Eq. (33), into its usual definition, one obtains: 
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The coefficients in Eq. (39) above are defined as follows: 
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From the definition of the friction factor and Reynolds number, it is concluded that the product fRe is given by: 
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3. RESULTS AND DISCUSSIONS 
 

Numerical results for the product of the Fanning friction factor-Reynolds number and for the velocity field were 
obtained from a code developed in the FORTRAN 90 programming language. 

In Table (1), it is shown the convergence analysis of the results of the product fRe for Newtonian fluids in eccentric 
annular ducts, the values were calculated for different values of aspect ratios (γ = 0.2; 0.5 and 0.8) and different values 
of eccentricity (ε = 0.1; 0.5 and 0.9) depending on the number of terms NT. There is a good convergence of results even 
for low number of terms. It is observed that with the gradual increase of the eccentricity, the convergence is reached 
with higher truncation orders. It can be seen clearly that for γ = 0.2 and ε = 0.1, the convergence occurs with NT=3, for 
ε = 0.5, the values converge with NT=9, while for ε = 0.9, it is observed a fully convergence with number of terms, 
NT=25. The most critical cases are those with ε = 0.9, in which the convergence is obtained with NT between 15 and 25 
terms. Also, in Table (1), it was performed a verification of the present results with those given in the work of Monteiro 
et al. (2010), showing that there is a good agreement between the two set of results. 
 
 

Table 1. Convergence analysis of the product fRe in eccentric annular ducts for Newtonian fluids. 

NT 
fRe 

γ = 0.2 γ = 0.5 γ = 0.8 
ε = 0.1 ε = 0.5 ε = 0.9 ε = 0.1 ε = 0.5 ε = 0.9 ε = 0.1 ε = 0.5 ε = 0.9 

1 23.271 28.714 68.701 23.949 27.980 57.701 24.103 27.743 55.335 
3 22.829 18.350 18.635 23.481 17.788 15.614 23.628 17.598 14.952 
9 22.829 18.196 13.269 23.481 17.671 11.471 23.628 17.480 10.945 

11 22.829 18.196 13.163 23.481 17.671 11.433 23.628 17.480 10.912 
13 22.829 18.196 13.126 23.481 17.671 11.425 23.628 17.480 10.905 
15 22.829 18.196 13.112 23.481 17.671 11.423 23.628 17.480 10.903 
17 22.829 18.196 13.108 23.481 17.671 11.422 23.628 17.480 10.903 
19 22.829 18.196 13.106 23.481 17.671 11.422 23.628 17.480 10.903 
25 22.829 18.196 13.105 23.481 17.671 11.422 23.628 17.480 10.903 
27 22.829 18.196 13.105 23.481 17.671 11.422 23.628 17.480 10.903 
b 22.830b 18.197b 13.105b 23.481b 17.671b 11.422b 23.628b 17.480b 10.903b 

b - Monteiro et al. (2010) 
 
 

In Table (2) are shown results for the product fRe for different aspect ratios (γ) and dimensionless eccentricities (ε). 
It is observed that an increase in the aspect ratio, the product fRe decreases when the values of eccentricity is greater 
than 0.5, and an increase in the product fRe for eccentricity smaller than 0.5. Also, in this table are performed 
comparisons of the present results with those of Monteiro et al. (2010), where it is observed an agreement in at least 
four significant digits. 
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Table 2. Comparison of the product fRe in eccentric annular ducts for Newtonian fluids. 

γ 
fRe 

ε = 0.05  ε = 0.2 ε = 0.5 ε = 0.7 ε = 0.9 

0.005 19.505a  19.210 a 17.857 a 16.802 a 16.014 a 
19.505b  19.210 b 17.857 b 16.802 b 16.012 b 

0.03 20.992 a  20.509 a 18.360 a 16.738 a 15.486 a 
20.993 b  20.510 b 18.360 b 16.738 b 15.486 b 

0.06 21.726 a  21.116 a 18.454 a 16.479 a 14.919 a 
21.727 b  21.117 b 18.454 b 16.479 b 14.919 b 

0.2 23.023 a  22.093 a 18.196 a 15.406 a 13.105 a 
23.023 b  22.094 b 18.197 b 15.407 b 13.105 b 

0.5 23.729 a  22.541 a 17.671 a 14.256 a 11.422 a 
23.729 b  22.542 b 17.672 b 14.256 b 11.422 b 

0.8 23.891 a  22.631 a 17.480 a 13.882 a 10.903 a 
23.891 b  22.631 b 17.480 b 13.882 b 10.903 b 

b - Monteiro et al. (2005) 
 
 
 

Now, it is performed an analysis of the effect of eccentricity and aspect ratio on isolines for the velocity ratio 
Vz/Vz,m 

. In Fig. 2, it is observed that the gradual increase of the eccentricity (ε) causes the redirection of velocity peak 
for the region θ = π, since increasing the eccentricity causes an increase of annular passage in the fluid flow. In Fig. 3, it 
is observed that the gradual increase in the aspect ratio leads to a decrease in the width of the velocity isolines. Also, 
one can see that an increase of the aspect ratio provides a tendency of symmetry in the velocity field. This observation 
is explained by the fact that this geometry approaching that of a parallel-plates channel when the aspect ratio tends to 
1.0. 
 
 
 
 

 

 
Figure 2. Effect of eccentricity on isolines for the velocity ratio Vz/Vz,m 

 for Newtonian fluids in eccentric annular ducts: 
(a) ε = 0.1 and γ = 0.2; (b) ε = 0.5 and γ = 0.2 e (c) ε = 0.9 and γ = 0.2. 

 
 
 
 
 
 

         (a) (b) (c) 
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Figure 3. Effect of aspect ratio on isolines for the velocity ratio Vz/Vz,m 

 for Newtonian fluids in eccentric annular ducts: 
(a) γ = 0.2 and ε = 0.1; (b) γ = 0.5 and ε = 0.1 and (c) γ = 0.5 and ε= 0.1. 

 
4. CONCLUSIONS 
 

A solution based on the Generalized Integral Transform Technique (GITT) was developed to predict fully developed 
laminar flow of non-Newtonian power-law fluids in eccentric annular ducts. The proposed integral transform approach 
provided reliable and cost effective simulations for the considered cases by employing a bipolar coordinate 
representation of the solution domain. It was possible to observe the direct influence of eccentricity and aspect ratio on 
the velocity isolines. Benchmark results for the product of the Fanning friction factor-Reynolds number were 
systematically tabulated for different values of the governing geometric parameters, demonstrating the usefulness and 
robustness of the GITT alternative solution procedure. Also,  
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