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Abstract. The current article aims to perform stabilized finite element approximations for inertialess flows of elasto-
viscoplastic fluids. The numerical method employed to approximate the mechanical model equations is the Galerkin  
least-squares method, in therms of the extra-stress, pressure and velocity. This method is more stable than the classical  
Galerkin method, what is achieved by the addition of mesh-dependent terms, functions of the residuals of the governing  
equations. The simulations were performed on a lid-driven cavity employing the elasto-viscoplastic model introduced  
by Nassar et al., 2011. To evaluate the influence of the elasticity, power-law index and jump number, θ* is varied from 
0.2 to 2.0, n from 0.4 to 1.0 and J from 500 to 10000.
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1. INTRODUCTION 

A large variety of non-Newtonian materials exhibits a yield stress, below which they have a high viscosity or even  
rigid body behavior and above which they behave as a shear-thinning liquid. A list of several materials exhibiting a  
yield includes cement slurries,  drilling muds and heavy oils in the petroleum industry; mayonnaise, butter,  creams, 
pastes and many dairy products in the food and cosmetics industries; clay, mud and other concentrated suspensions in  
nature.  Models  have  been  proposed  along  the  years  to  better  approximate  the  yield-stress  behavior  with  the 
experimental  results, since elasticity is being also observed on these fluids. Nassar  et al. (2011) proposed a elasto-
viscoplastic model based on the Oldroyd-B fluid model which takes into account the elastic effects actually seen on 
many experimental results.

The main purpose of this paper is to study elasto-viscoplastic fluid flows using a multi-field Galerkin least-squares 
(GLS) finite element formulation which takes into account velocity, pressure and extra-stress fields as primal variables.  
The classical Galerkin method does not guarantee stable approximations, showing some numerical patologies – such as  
the locking of the velocity field and spurious oscillations on the pressure field – when the Babuška-Brezzi finite element 
subspaces conditions are not satisfied. The alternative employed in this work is to enhance the Galerkin stability –  
adding mesh-dependent terms to the formulation – without upsetting its consistency. 

The dimensionless relaxation time for elasto-viscoplastic liquids, the regularization number of the modified SMD 
viscosity model – namely the jump number  J, introduced by Souza Mendes  et al. (2007) – and the power-law index 
were ranged in order to investigate the effects of these quantities on the morphology of the unyielded zones of the flow.  
The numerical  computations, considering steady-state creeping flows, have been carried out for power-law indexes 
ranging from 0.4 to 1.0, the jump number J varying from 500 to 10000 and the dimensionless relaxation time from 0.2 
to 2.0. The numerical results generated by the GLS approximations were physically coherent with the flow dynamics of 
the problem, being in accordance with the trends pointed out on the literature. 

2. MECHANICAL MODELING

The mechanical model of this work may be written coupling the momentum balance and the mass conservation  
equations with a modification for the upper-convected Oldroyd-B viscoelastic constitutive equation. The main goal of 
the elasto-viscoplastic model employed is replace the constant value viscosity, relaxation and retardation times – on the 
Oldroyd-B model – for expressions that are functions of the strain rate – see Nassar et al. (2011) for further details.

The constitutive equation for the elasto-viscoplastic model is given by:

τ+θ1( γ̇) τ
∇

=2 η( γ̇)(D(u )+θ2( γ̇)D
∇

(u))    (1)
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where  τ is the extra stress tensor,  D the strain rate tensor,  τ
∇

and D
∇

represent their upper-convected derivatives, 
respectively given by

τ
∇

=(∇ τ)u−(∇ u)⋅τ−τ⋅(∇ u)
T  and D

∇

=(∇ D)u−(∇ u)⋅D−D⋅(∇ u)T    (2)

with the magnitude of the strain rate tensor given by γ̇=√2 tr∣( D (u))2∣ and u representing the velocity field.
The viscosity function employed in this work is a modification – by adding an infinite shear rate viscosity – of the 

expression proposed by de Souza Mendes and Dutra (2004),

η(γ̇ )=(1−exp(−
η0
τ 0

γ̇))(
τ0

γ̇ +K γ̇
n−1)+η∞    (3)

The relaxation and retardation times are given by the following functions:

θ1(γ̇ )=(θ01−θ∞1
)exp (−(η0 γ̇/ τ0))+θ∞1

   (4)

θ2( γ̇)=(θ02−θ∞2
)exp (−(η0 γ̇ / τ0))+θ∞2

   (5)

where θ01 and θ∞1 are,  respectively,  the  below-yield  and  above-yield  relaxation  times; θ02 and θ∞2 are, 
respectively, the below-yield and above-yield retardation times – neglected in this work. According to Eqs. (3)–(5), for 
the unyielded material – in the limit when γ̇→ 0 , η(γ̇ )→η0 , θ1(γ̇ )→θ01 and θ2( γ̇)→θ02 – the model tends 
to  the  classical  Oldroyd-B  model.  On  the  other  hand,  for  the  yielded  material  –  when γ̇>γ̇0 , 

η(γ̇ )→(τ0/ γ̇ )+K γ̇
n−1

+η∞ , θ1(γ̇ )→θ∞1
and θ2( γ̇)→θ∞2

– we have an Oldroyd-B equation with a Herschel–
Bulkley type viscosity, with constant relaxation and retardation times, equal to θ∞1 and θ∞2 , respectively. In the 
special case for which θ∞1

=θ∞2
=0 , the Generalized Newtonian Liquid model is recovered when ( γ̇>γ̇0) .

On Eq. (6) are summarized the mechanical model equations employed in this work, altogether with the appropriate  
velocity and stress boundary conditions.

div u=0 in Ω
ρ(∇ u)u+∇ p−div τ−f=0 in Ω

τ+θ1(γ̇ ) τ
∇

=2 η( γ̇)(D(u)+θ2( γ̇)D
∇

(u)) in Ω

u=ug on Γg
u

τ=τg on Γg
τ

[τ−p1]n= th on Γh
τ

   (6)

where  is the fluid density,  p the hydrostatic pressure, f is the body force vector; th is the stress vector, ug and g are the 
imposed velocity and extra- stress boundary conditions, respectively.

2.1 Numerical approximation

To approximate the mechanical  model described above it was employed a multi-field stabilized Galerkin least-
squares formulation in therms of velocity, pressure and extra-stress. The classical Galerkin method does not guarantee 
stable  approximations,  may  generate  solutions  without  physical  meaning  and  numerical  pathologies  for  mixed 
incompressible fluid flows. The inherent difficulties associated to the Galerkin method are due to the compatibility of  
velocity and pressure finite element subspaces, e.g., the need to satisfy the Babuška-Brezzi condition involving these 
subspaces,  a condition which was established by Babuška and Brezzi  in the early 70's.  The velocity and pressure 
subspaces may not be spanned by any arbitrary combination of finite element interpolations and, in the case of this  
work, which employs a multi-field formulation, another compatibility condition must be imposed on the choice of the  
stress and velocity subspaces. The alternative to remedy Galerkin deficiencies adopted here for incompressible fluid  
flows was to change the classical Galerkin formulation – adding mesh-dependent terms, which are functions of the 
residuals of flow governing equations, evaluated element-wise – and use simple Lagrangean elements.

3. NUMERICAL RESULTS

Figure 1 schematically shows the Lc x Lc geometry with the employed boundary conditions: uniform unitary velocity 
in the x2 direction on the top wall and non-slip condition (u1=u2=0) at the remaining walls. For all computations, it is 
used a mesh with 10000 elements, with 10201 nodal points – selected in accordance with Santos et al. (2011).
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The dimensionless parameters employed to characterize the flows are, firstly, the dimensionless flow rate U* – also 
seen as the yield stress level of the fluid (see, for details, de Souza Mendes (2007)),

U *=
uc

(γ̇1 Lc )
   (7)

where  uc is taken as the cavity lid velocity and  Lc is the cavity height. The jump number  J, introduced by de Souza 
Mendes et al., 2007, is a rheological dimensionless property for viscoplastic fluids which provides a relative measure of 
the shear rate jump that occurs when the stress is around the fluid yield-stress – τ ≈ τ0. Mathematically, it is defined as

J =
γ̇1−γ̇0

γ̇0

=
(τ 0/ K )

1/n
−τ 0/η0

(τ0/ K )
1 /n =η0(τ0

1−n

K )
1/n

−1    (8)

in which γ̇0 is the shear rate value at the beginning of the shear rate jump and γ̇1 the shear rate value for which the 
power-law region begins. To quantify the elastic effects on the flow, it is employed the non-dimension relaxation time,  
which relates the high Newtonian viscosity for very low strain rates with the below-yield relaxation time, an is defined 
as

θ
*
=

τ0θ01
η0

   (9)

Figure 1 – The geometry.

To determine the unyielded zones of the flow, it was employed the γ̇0−criterion , , which considers unyielded the 
regions where the strain rate is below the strain rate at the end of the high Newtonian viscosity plateau of the viscosity  
function – see Santos et al. (2011), for details. The influence of the elasticity on the flow unyielded zones is shown on 
Fig. 2, ranging the non-dimensional relaxation time, θ*, from 0.2 to 2.0, for  U*=0.01, J=1000 and n=0.5. We observe 
that with the increase of θ* the unyielded zones (black ones at the figures) becomes asymmetric and decrease in size – 
once the fluid is subjected to higher stress levels.

(a) (b) (c) 
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(d) (e) (f)
Figure 2 – Yielded and unyielded regions, for U*=0.01, J=1000 and n=0.5: (a) θ*=0.2; (b) θ*=0.8; (c) θ*=1.0; (d) θ*=1.3; 

(e) θ*=1.5; (f) θ*=2.0.

Figure 3 show the influence of the viscosity function power-law index, varying n from 0.4 to 1.0, with  U*=0.1, 
J=1000 and θ*=0.25. The unyielded zones at the bottom of the cavity are slightly reduced with the increase of n – once 
again, higher stress levels are reached, in this case, due to the higher n indexes. The region at the center of the cavity do 
not present a relevant reduction/augmentation with the n variation.

(a) (b)

(c) (d)
Figure 3 – Yielded and unyielded regions, for U*=0.1, J=1000 and θ*=0.25: (a) n=0.4; (b) n=0.7; (c) n=0.9; (d) n=1.0.

The jump number variation, performed varying the  η0 viscosity, implies on the same trend observed ranging the 
below-yield relaxation time – once these quantities are coupled on the non-dimensional relaxation time. For low jump 
numbers, the unyielded regions are asymmetric, since the flow is more elastic and the stresses at the flow fields are  
higher. As J is increased, the unyielded zones increase and becomes symmetric.

(a) (b)

(c) (d)
Figure 4 – Yielded and unyielded zones, for U*=0.1 and n=0.5; and θ*=0.25: (a) J=500 and θ*=0.5;

(b) J=1000 θ*=0.25; (c) J=5000 and θ*=0.05; (d) J=10000 and θ*=0.025.
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4. FINAL REMARKS

In this article, some numerical simulations of inertialess flows of elasto-viscoplastic fluids have been undertook. The 
elasto-viscoplastic fluid is the one introduced by Nassar et al. (2011) and the mechanical model is approximated via a 
multi-field Galerkin least-squares method in extra-stress, pressure and velocity. Due to the good stability features of the  
GLS method, all computations have employed a combination of equal-order bilinear Lagrangian finite elements. The 
numerical results have evidenced the strong influence of the non-dimension relaxation time and jump number on the 
size and location of the unyielded material regions. The results obtained showed a qualitatively good agreement with 
the related elasto-viscoplastic experimental results on literature.
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