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Abstract. This work focus on developing a numerical methodology for the determination of permeability of RTM  
reinforcements. The method allows the calculation of  the three permeability components (K xx, Kyy and Kzz) from a set  
of time dependent flow front coordinates data; one coordinate for each permeability component. An initial guess is  
set for the permeabilities and the difference between numerical and experimental values of flow front position at a  
specific time is minimized with the solution of an algebraic system of equations. Newton-Raphson method was used to  
solve the non-linear system of equations. The results presented in this paper were obtained for a rectilinear (1D)  and  
a radial 2D problem, both with analytical solutions for the flow front position as a function of time. For the 1D  
comparison between the numerically calculated Kxx and the analytical value agreed within 1.7% and, for the 2D  
radial problem, numerical and analytical values of Kxx and Kyy agreed within 1.3%.
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1. INTRODUCTION

Resin Transfer Molding (RTM) is a process that comprises the infusion of resin into a closed mold  filled with a  
porous  fibrous  reinforcement.  RTM  is  widely  used in  the  production  of  polymeric  composites  with  a  variety  of  
geometries  and sizes.  Polymer composites have reached a very  important  level  of usage in  the current  context  of 
engineering materials  in  various industries  such as  maritime, aeronautical,  automotive  and energy  (wind turbines)  
(Breard et al., 2005). The main production centers in Brazil are located in São Paulo-SP, Belo Horizonte-MG, Caxias  
do Sul-RS and Joinville-SC.

The numerical modeling plays an important role in the RTM study. With the numerical simulation of the RTM 
process, it is possible to determine the flow advance inside the mold cavity, the appearance of empty regions (actually  
air bubbles) and predict possible structural problems in the final produced part. It  is also possible to determine the  
correct position for the inlet and outlet sections, thus making the infusion process faster and more efficient and thereby 
minimizing costs related to mold design and part manufacturing. However, to obtain realistic results with the numerical  
simulation, accurate information about the physical properties of the resin and the reinforcement are necessary.

Most of the numerical models use Darcy's Law to correlate resin velocity with pressure drop inside the mold. Thus 
it becomes necessary the prior knowledge of the permeability of the medium and the viscosity of the resin. In addition , 
depending on the model used, it is also necessary to inform other resin properties such as density and specific heat  
(models in which energy equation is included) and medium porosity.

The  quality  of  the  obtained results  is  closely associated with the  precise  measurement of  all  above discussed 
properties. According to Sharma and Siginer (2008), there is a large number of studies in the literature that discuss the 
experimental determination of RTM reinforcement permeability. Most of them concentrate on planar permeability (Kxx 

and  Kyy) and only a few  focus on determining the transverse permeability (Kzz). Due to this, in the present work, a 
numerical methodology to determine medium permeability in all three directions from experimental data is proposed.  
The methodology is generic proposed for  n dimensions and validated for the 1D and 2D cases. The 3D case will be 
investigated in a future work. Medium porosity, resin viscosity and density and flow position as a function of time are  
obtained experimentally  and  used to  feed a  computational  model  that  calculates  the  unknown permeabilities.  The 
computational model consists of a CFD (Computational Fluid Dynamics) application to solve the RTM resin infiltration 
problem combined with Newton-Raphson method to solve a non-linear system of equations and to calculate the desired 
permeabilities.
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2. PROBLEM DESCRIPTION

Consider the simplified two dimensional (2D) geometry presented in Fig. 1. In this example, resin is entering into 
the mold through a central injection nozzle of radius r. The grey area represents the mold area filled with resin at time t. 
Consider also two points at the flow front line of coordinates (x1,  y1) and (x2,  y2). Reinforcement porosity (ε), resin 
viscosity (µ) and resin density (ρ) are considered known and constants.

Fig. 1 - Schematic representation of the problem

Assuming that for time t, (x1, y1) and (x2, y2) were experimentally determined, and that x1,n and y2,n are the resin flow 
position calculated numerically, it is possible to write an equation for the residual such as

{ f 1(K xx , K yy , t )=x1,n−x1=0
f 2(K xx , K yy ,t)=y2,n− y2=0

(1)

In  Eq. (1),  Kxx and  Kyy are the unknowns. Variables  x1,n and  y2,n can be  numerically calculated with a Control 
Volume/Finite Element – CV/FE (Shojaei, 2006; Simacek and Advani, 2003) or the Volume of Fluid - VOF (Luoma
and Voller, 2000; Yang et al., 2010) method. In this work, the VOF method was used within the OpenFOAM software  
to solve the problem.

Using the Newton-Raphson method (Kincaid and Cheney, 2001), the system given by Eq. (1) can be solved by

K⃗ n+1
= K⃗ n

−
f⃗
̄̄J

(2)

where K=[ K xx , K yy ]
T

, f =[ f 1 , f 2 ]
T

, n the iteration and J  is the Jacobian matrix given by

̄̄J=[
∂ f 1

∂ K xx

∂ f 1

∂ K yy

∂ f 2

∂ K xx

∂ f 2

∂ K yy

] (3)

In Eq. (3), each derivative of the Jacobin matrix is numerically approximated by

∂ f i(K ii)

∂ K ii

=
f i(K ii+h)− f i(K ii)

h
(4)

Solution of Eq. (2) results in the direct determination of the permeability components Kxx and Kyy.
The solution procedure has been presented for a 2D case, however it is easily extended to the 3D case. Actually,  

Eq. (2) has the same form regardless of the number of dimensions.

3. RECTILINEAR SOLUTION

The proposed methodology is first evaluated for a simple rectilinear problem to which algebraic solution can be 
obtained. Figure  2 shows the computational domain, the boundary conditions and the variables used in the current 
solution. The flow front position as a function of time can be analytically determined by (Rudd et al., 1997)

x= 2K xx P0

 
t (5)

where P0 is the injection pressure.



Proceedings of ENCIT 2012           14th Brazilian Congress of Thermal Sciences and Engineering
Copyright © 2012 by ABCM             November 18-22, 2012, Rio de Janeiro, RJ, Brazil

For the analytical solution, Kxx was set equal to 3 x 10-10 m² and the calculated x value for t = 80 s was 0.239 m.
A grid with 2700 elements was used to discretize the computational domain. This grid was chosen to guarantee that  

a relative error smaller than 1% is obtained between numerical and analytical solutions when the right value of Kxx is 
used.

error=100
K analytical−K numerical

K analytical

(6)

The numerical procedure consists in guessing an initial value for Kxx (1 x 10-10 m²), using Eq. (1) (in this case the 
system has only one equation) to calculate Kxx.

Fig. 2 - Computational domain for the rectilinear solution sumiu um “.” de 0.06

Convergence history is shown in Tab. 1. It is recommended to have an initial guess of the same magnitude order of 
the real permeability, however this may not be a constraint to the proposed method. In this case, the initial guess is one 
third of the real  Kxx value and a total of 13 iterations were necessary to reach a relative error of 0.01% between two 
successive Kxx values.

Table 1. Convergence for rectilinear problem

Iteration Kxx (m²) f(Kxx) Error (%)*

- 1.000 x 10 -10 0.1398540 -
1 1.991 x 10 -10 0.1966550 49.79
2 2.415 x 10 -10 0.2163499 17.53
3 2.858 x 10 -10 0.2351402 15.5
4 2.947 x 10 -10 0.2388119 3.02
5 2.986 x 10 -10 0.2403755 1.31
6 2.965 x 10 -10 0.2395431 -0.71
7 2.957 x 10 -10 0.2392256 -0.27
8 2.924 x 10 -10 0.2378732 -1.11
9 2.940 x 10 -10 0.2385506 0.54
10 2.954 x 10 -10 0.2391070 0.46
11 2.952 x 10 -10 0.2390474 -0.05
12 2.951 x 10 -10 0.2389880 -0.05

13 2.951 x 10 -10 0.2389960 0.01

* error=(100 K n+ 1
−K n )/ K n+ 1 where n is the iteration

The calculated Kxx value is 2.951 x 10-10 m² while the actual (analytically) value is 3 x 10 -10 m². Thus, the final error 
in the Kxx calculation given by Eq. (1) is of 1.66%.

4. RADIAL SOLUTION

For the radial  solution, assuming an orthotropic reinforcement  medium, the unknowns of the  problem are the  
permeabilities in the x and y directions. Here, the analytical solution for the 2D radial problem presented in Fig.  3 is 
used to test  the proposed method in a 2D problem. Closed solution for 2D RTM problems are only available  for  
isotropic media where Kxx = Kyy = K.

The radial flow front position, r, as a function of time for the condition shown in Fig. 3 can calculated by [Rudd et
al., 1997]
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t=
μϵ

2 K P 0 [r 2 ln ( r
r0 )−

1
2

( r2
−r0

2 )] (7)

where r0 is the injection radius.

Fig. 3 - Computational domain for the radial 2D solution

Solving  Eq.  7 for  t = 1 s, the calculated flow front position is  r = 0.0218561 m, thus in  Fig.  3,  x1 =  y2 =  r = 
0.0218561 m.

The problem unknowns for the radial solution are Kxx and Kyy. For this specific case, Eq. (1) can be rewritten as

{ f 1=x1,n( K xx , K yy ,t )−0.0218561=0
f 2=y2,n(K xx ,K yy , t )−0.0218561=0

(8)

Equation 8, which is a system of equations, is solved with the Newton Raphson method as suggested in Eq. (2). 
This equation set resembles a simple system of two algebraic equations with two unknowns, however it is important to 
notice that the flow front positions x1,n and x2,n are calculated with OpenFOAM by solving a multiphase (resin + air)  
fluid flow problem. Variables x1,n and x2,n need to be evaluated several times for every Newton iteration and, for this  
reason, the overall solution time will be considerably large if refined grids were used.

Convergence is stable and a good approximation for the permeabilities can be achieved with just a few Newton 
iterations (Tab. 2). It is only necessary to pay attention to the numerical approximation of the derivatives in Eq. 3. In 
this particular solution, the unknowns are very small (order  of 10 -10) and,  for this reason, the parameter  h used to 
evaluate the derivatives (Eq. 4) must be a few orders smaller than K. In the solution presented in Tab. 2, it was used h = 
1 x 10 -15.

Table 2. Convergence for 2D radial problem.

Iteration Kxx (m²) Kyy (m²) residue*

- 1 x 10 -10 2 x 10 -9 -
1 3.30971 x 10 -10 3.92567 x 10 -10 0.0500893
2 3.50948 x 10 -10 2.82613 x 10 -10 0.00237166
3 2.98005 x 10 -10 3.03908 x 10 -10 0.000194801
4 2.96617 x 10 -10 2.97611 x 10 -10 8.11255 x 10 -6

5 2.96357 x 10 -10 2.97500 x 10 -10 5.52149 x 10 -7

* residue= f 1(K xx , K yy , t )+ f 2(K xx , K yy , t)

For the ortrotopic case, where Kxx ≠ Kyy, positions x1 and y2 (Fig. 3) can not be analytically determined and for this 
reason this case has not been tested yet. This will be done in a future work of the group, however it is expect that the 
proposed algorithm will show the same performance (fast solution with a stable convergence curve).
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5. CONCLUSIONS

A simple numerical methodology has been proposed for the permeability determination of porous reinforcements 
used in the RTM process. The method combines a numerical simulation for resin infiltration inside the porous media 
with the solution of a non-linear system of algebraic equations created by minimizing the residue between the numerical  
and experimental results for the time dependent flow front position. The method was first tested using two simple 
problems with analytical solution: rectilinear and radial injection in an isotropic medium.

Results showed that with only one sample of experimental data for each unknown permeability is needed to solve  
the  problem.  Moreover,  once  the  flow advance  inside  the  mold  cavity  can  be  numerically  predicted  with  all  its  
complexity, there is no need to ensure that the flow reaches a specific behavior in order to perform the experiment, i.e.,  
in a rectilinear 1D permeability experiment, for example, there is no need to guarantee that the flow front become a  
strait line moving as and solid object. A single sample with  x and  t at any position inside the mold is sufficient to 
calculate the permeability with the proposed methodology. Other characteristics like the injection pressure dependence  
with time can also be accounted within the numerical solution, simplifying the experimental runs and improving the 
quality of the results (i.e. the determination of the permeability value).

The next step will be to run the simulation for a 3D geometry and to determine all three permeability components 
based on experimental information of three coordinates of the domain (x1, t), (y2, t) and (z3, t).
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