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Abstract. Analytical solutions have varied uses. One is to provide solutions that can be used in verification of numerical

methods. Another is to provide relatively simple forms of exact solutions that can be used in estimating parameters, thus,

it is possible to reduce computation time in comparison with numerical methods. In this paper, an alternative procedure

is presented. Here is used a hybrid solution based on Green’s function and real characteristics (discrete data) of the

boundary conditions.
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1. NOMENCLATURE

X22 cartesian problem x-coordinate
with boundary conditions of the second kind

T0 initial temperature, oC

x cartesian coordinate, m
L plate dimension, m
t time, s
T (t) temperature, oC

q(t) heat flux, W/m2

k thermal conductivity, W/m.K
ci constant, i = 1, 2

Greek Symbols
α thermal diffusivity, m2/s

∆ on the discrete-time
Subscripts
m eigenvalue index, m = 1, 2, 3, ..

n flux components index, n = 1, 2, 3, ..., N

2. INTRODUCTION

Analytical solutions have varied uses. One is to provide solutions that can be used in verification, that is, to provide
solutions which the accuracy of approximate methods, such as finite difference and finite element solutions, can be inves-
tigated (Beck et al., 2004); (Beck et al., 2006); (McMasters et al., 2002(1); (McMasters et al., 2002(2); (Roache, 1998).
Another is to provide relatively simple forms of exact solutions that can be used in estimating parameters (Gustafsson
et al., 1984); (Cole, 2005).

Realistic applications in heat conduction usually have transient variations at the boundaries. Many examples can be
cited such as manufacturing like welding (Gonçalves et al., 2010), cutting (Carvalho et al., 2006) or drilling (Huang et al.,
2007) process heating of brake drums of cars and cooking of foods (Beck et al., 2008). However, few exact solutions for
transient boundary conditions exist.

The main feature of these problems is that heat flux is not always described by one mathematical expression, but it can
be obtained through discrete measurements, estimating techniques or optimization procedures and even by curve fitting.

Therefore, purely analytical solutions are almost impossible to obtain due to discrete nature of the boundary conditions.
In this paper, an alternative proposal is presented. It is about of using hybrid solution where is employed all analytical
formulation of thermal problem. However the real characteristics (discrete data) of the boundary conditions are applied
only in time integrals of the general solution obtained based on Green’s function.

In this way, the solution is provided assuming that heat flux data can be represented such as a vector by its components
that are constants at each acquisition time (experimental or estimated). The obtained approximation is very important in
investigation of the inverse heat conduction problems (IHCPs) because it gives a convenient expression for the temperature
in terms of the heat flux components.
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This research will be concerned specifically to the analytical solution obtained by Green’s functions for a one-
dimensional heat conduction problem. This problem is referred by X22 (Beck et al., 1992). In this case, (Fig. 1),
this means that boundary conditions are of the second kind in x = 0 (imposed heat flux) and in x = L (insulated thermal).

xq(t)

T0

x=0 x=L
Figure 1. One-dimensional problem (X22)

3. FUNDAMENTALS

A mathematical description of this problem (Fig. 1) is
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and initial condition

T (x, 0) = T0 (1c)

Equation solution of Eqs. (1a)- (1c) using Green’s function can given by (Fernandes, 2009)
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If the heat flux data can be represented by its components (Fig. 2), q(t) = [q1, q2, q3, ..., qn] with qn constant at each
∆t = tn+1 − tn, with n = 1, 2, ..., N − 1.

Generally Eq. (2) can be written by
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Figure 2. Experimental heat flux

Eq. (2) can then be re-written by

T (x, t) = T0 +
α
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Analytical (and exact) solution considering heat flux function, q(t) = c1e
−c2t to be applied in Eq. (2) solved the

integrals of time has
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Thus, in the next section will be showed the comparison between of results obtained through Eqs. (5) and (6). The
proposal of this work is verify that this hybrid solution (Eq. (5)) is a convenient expression for describe the temperature
in terms of the heat flux components.

4. RESULTS

Solutions have been implemented in Matlab c©. The following physical and geometrical data were used, sample time
dt = 7 [s], thermal conductivity, k = 0.159 [W/m.K], thermal diffusivity, α = 1.57E − 07 [m2/s]; initial temperature,
T0 = 25 [oC] and thickness L = 50E − 03 [m].
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Figure 3. Discrete heat flux for Eq. (5) where qn = [0 c1 exp(−c2t)] with c1 = 320 and c2 = .002



Proceedings of the ENCIT 2012
Copyright c© 2012 by ABCM

14th Brazilian Congress of Thermal Sciences and Engineering
November 18-22, 2012, Rio de Janeiro, RJ, Brazil

The discrete heat flux shown in Fig. 3 is applied in Eq. (5), i.e., q(t) is represented by the components q = [0 c1 exp(−c2t)].
Figures 4(a) and 4(b) show a comparison between temperature obtained from Eqs. (5) and (6) at x = 0 and x = L.
Residues are shown in Figs. 5(a) e 5(b).

Considering the sample time, dt = 7 [s], the greater difference is lower than 2, 5% for x = 0 and lower than 0, 08%

for x = L. However, if sample time is lower a great agreement can be reached, as shown in Table 1. This table presents a
comparison between both solution for dt = 1 [s]; 0, 5 [s]; 0, 1 [s] e 0, 01 [s] at x = 0, which shows the accuracy between
the solutions when making dt increasingly smaller.
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Figure 4. Comparison between Eq. (5) e (6)
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(b) x = L

Figure 5. Percentual error between solutions when dt = 7 s

In other test, Fig. 6 shows estimated heat flux with sample time equal 7.03 [s] and the same previous physical and
geometrical data that is used. Figures 7(a) and 7(b) show a comparison of experimental and theoretical temperature
calculated from positions x = 0 and x = L.

Residues are shown in Figs. 8(a) and 8(b). Deviate in this case can be attributed to experimental data. It must
be informed that the discrete heat flux is not exact but have been obtained from inverse problem. Comparison with
temperature measurements should consider the agreement between the thermal model (1D) and the experimental apparatus
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Table 1. Comparison between solutions using Eqs. (5) e (6)

x = 0 ∆t = 1 s ∆t = 0, 5 s ∆t = 0, 1 s ∆t = 0, 01 s
Eq. (5) Eq. (6) diff Eq. (6) diff Eq. (6) diff Eq. (6) diff

t T (q(t)) T (q = [qi]) T (q = [qi]) T (q = [qi]) T (q = [qi])

0,0 25,0000000 25,0000000 0,0000000 25,0000000 0,0000000 25,0000000 0,0000000 25,0000000 0,0000000
1,0 25,8782847 25,8794429 0,0011581 25,8788273 0,0005425 25,8783816 0,0000969 25,8782937 0,0000090
2,0 26,2488556 26,2504052 0,0015496 26,2495887 0,0007331 26,2489898 0,0001341 26,2488683 0,0000127
3,0 26,5320627 26,5339046 0,0018419 26,5329396 0,0008769 26,5322252 0,0001625 26,5320782 0,0000155
4,0 26,7698621 26,7719470 0,0020849 26,7708592 0,0009971 26,7700485 0,0001864 26,7698800 0,0000179
5,0 26,9785294 26,9808264 0,0022970 26,9796316 0,0011022 26,9787367 0,0002072 26,9785494 0,0000200
6,0 27,1664236 27,1689108 0,0024872 27,1676202 0,0011966 27,1666496 0,0002260 27,1664454 0,0000219
7,0 27,3385172 27,3411782 0,0026610 27,3398003 0,0012830 27,3387605 0,0002433 27,3385408 0,0000236
8,0 27,4980549 27,5008767 0,0028218 27,4994180 0,0013631 27,4983142 0,0002592 27,4980801 0,0000252
9,0 27,6472935 27,6502654 0,0029719 27,6487313 0,0014378 27,6475676 0,0002741 27,6473201 0,0000267

10,0 27,7878784 27,7909916 0,0031132 27,7893866 0,0015082 27,7881666 0,0002882 27,7879064 0,0000281
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Figure 6. Estimated heat flux using inverse techniques (Borges, 2008)
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Figure 7. Comparison between experimental temperature and calculated temperature from Eq. (5)

used. Despite of this consideration, maximum perceptual errors were 2, 5% and 1, 4% at x = 0 and x = L respectively.
Table 2 also presents the comparison between experimental temperatures and the solution by Eq.(5) for several sampling
of the time.
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Figure 8. Perceptual error between experimental and calculated temperature

Table 2. Comparison between experimental temperatures and the solution by Eq.(5)

[dt = 7.03 s] x = 0 x = L
t Texp∗ Tana∗∗ diff(%) Texp∗ Tana∗∗ diff(%)

0,00 26,1719 26,2213 0,1888 26,2363 26,2041 0,1227
7,03 26,1846 26,2274 0,1635 26,2285 26,2041 0,0930

14,06 26,2236 26,2987 0,2864 26,2500 26,2041 0,1749
21,09 26,3770 26,4882 0,4216 26,2451 26,2041 0,1562

105,45 30,8887 31,2080 1,0337 26,2441 26,2041 0,1524
203,87 35,0215 35,2823 0,7447 26,2607 26,2041 0,2155
302,29 34,2402 34,5405 0,8770 26,2471 26,2041 0,1638
400,71 33,2344 33,5435 0,9301 26,2432 26,2041 0,1490
506,16 32,3457 32,6805 1,0351 26,2539 26,2044 0,1885

1005,29 30,1924 30,5486 1,1798 26,2900 26,2578 0,1225
2003,55 28,7422 29,1619 1,4602 26,5244 26,7429 0,8238
3001,81 28,1875 28,6347 1,5865 26,8838 27,2091 1,2100
4000,07 27,9014 28,3824 1,7239 27,1689 27,5027 1,2286
5005,36 27,7197 28,2589 1,9452 27,3330 27,6799 1,2692
6003,62 27,6172 28,2032 2,1219 27,4180 27,7888 1,3524
7001,88 27,5635 28,1868 2,2613 27,5020 27,8608 1,3046

∗Texp: Experimental temperature; ∗∗Tana: Analytical temperature

5. CONCLUSION

The use of analytic solution is a powerful tool to validate numerical methods and to minimize computational cost
present in numerical solutions. However, a great difficult can appear when real and discrete boundary conditions are
present. This work shows an procedure that assures fast and accuracy results.

Besides, the hybrid solution can also be used to any kind of heat flux (step, triangular, sinusoidal) mainly from discrete
measurements without obtaining a new analytical expression. It means the integral term in Eq. (2) doesn’t need to be
solved analytically for each heat flux shape.
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