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Abstract. This work proposes a novel methodology for solving convective heat transfer problems using integral trans-
forms: The Upwind Generalized Integral Transform Technique (UDS-GITT). The method is illustrated by solving the heat
transfer problem in a counter flow regenerator. The advective terms are approximated using an upwind discretization
scheme (UDS) and the transformation of the problem is carried-out using the Generalized Integral Transform Technique
(GITT). A validation table displays the convergence of effectiveness, showing good agreement with the literature. The
results show that UDS-GITT has significant reduction of the oscillations compared to traditional GITT if a proper dis-
cretization step-size (δ) is chosen.
Keywords: Upwind Generalized Integral Transform Technique, Mixed Formulation, Convective Heat Transfer Problem,
Regenerative Heat Exchangers

1. NOMENCLATURE

x spatial coordinate
t time
τ dimensionless dwell time

NTU number of transfer unit
C∗r matrix to fluid capacity ratio
T fluid temperature
TS solid temperature
TH homogeneous fluid temperature
TSH homogeneous solid temperature
TH transformed homogeneous fluid temperature
TSH transformed homogeneous solid temperature

Tin inlet temperature
To initial fluid temperature distribution
Tso initial solid temperature distribution
N norm

Greek Symbols
µ eigenvalues
ψ eigenfunctions
ε effectiveness
δ discrete step-size
Λ discrete derivative

Subscripts
n, m GITT indexes

2. INTRODUCTION

The optimization of computational solution codes has played a significant role in the implementation of numerical
methods, since maintaining CPU costs at a minimum level has always been a major concern. Moreover, numerical simu-
lations of periodic heat transfer problems involve applications of great significance. Within the realm of heat regenerators
(Shah and Sekulic, 2002), computational simulations have been demonstrated to have an advantageous effect on the
construction and operation of these types of exchangers.

Discrete methodologies appear, in general, as main option to solve a variety of heat and mass transfer problems.
Although most studies involve different discrete solution methods, only a few investigations are based on formulations
that use the Generalized Integral Transform Technique (GITT) (Cotta, 1993).

Some of the recent applications of the Generalized Integral Transform Technique include heat transfer in combined
pressure-electroosmotic driven flows (Sphaier, 2012), conjugate convection-condution heat transfer using a single do-
main formulation (Knupp et al., 2012), convective heat transfer in flows within wavy walls (Silva et al., 2011; Castellões
et al., 2010), wind-induced vibrations on overhead conductors (Matt, 2009), hyperbolic heat conduction problems (Mon-
teiro et al., 2009), transient diffusion in heterogeneous media (Naveira-Cotta et al., 2009), heat and mass transfer in
adsorbed gas storage (Hirata et al., 2009), atmospheric pollutant dispersion (Almeida et al., 2008), dispersion in rivers
and channels (de Barros and Cotta, 2007), heat transfer in magnetohydrodynamics (Lima et al., 2007), solution of the
Navier-Stokes equations (de Lima et al., 2007) and the boundary layer equations (Paz et al., 2007), stability analysis
in natural convection (de B. Alves et al., 2002), applications to irregular geometries (Sphaier and Cotta, 2002), among
others. Recently (Sphaier et al., 2011), a unified integral-transform algorithm was proposed, facilitating the application
of the technique and thereby enabling a wider number of users to adopt this eigenfunction-based solution methodology.
In the realm of heat exchangers it should be mentioned the works (Scofano-Neto and Cotta, 1993) and (Scofano-Neto and
Cotta, 1992) which employed lumped-differential schemes and GITT for double-pipe heat exchangers.
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This work proposes a novel methodology based on integral transform technique and upwind discretization of the
advective term (GITT-UDS) to solve the heat transfer problem of a counter flow rotary regenerator. The main goal of the
advective term upwind discretization is the introduction of a numerical diffusion (more dissipation), smoothing the results
and reducing the oscillations which are generally seen in GITT solutions.

3. PROBLEM FORMULATION

The studied problem is that of heat transfer in a rotary regenerator. The traditional formulation, using the ε − NTU0

method developed by Coppage and London (1953), employed in this kind of problem is shown bellow.

τ
∂T (x, t)

∂t
+
∂T (x, t)

∂x
= NTU[TS(x, t)− T (x, t)] for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 (1a)

C∗r
∂TS(x, t)

∂t
= NTU[T (x, t)− TS(x, t)] for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 (1b)

T (0, t) = Tin, (1c)
T (x, 0) = To(x), (1d)
TS(x, 0) = Tso(x) (1e)

The previously described methodology provides a transient solution to a single process, or simply a single-blow
solution. The first process is started from the initial conditions already mentioned, and from there on the final temperature
distribution of every process are used as initial conditions to the next one. However, for a counterflow arrangement, the
initial conditions are fed into the next process with the change of variable:

xnext = 1− xcurrent (2)

The periodicity of the problem appears in the inlet conditions of each process:

Tcold(x, 0) = Thot(1− x, 1) for the cold period (3)
Thot(x, 0) = Tcold(1− x, 1) for the hot period (4)

the same concept is applied to the solid temperature:

TS,cold(x, 0) = TS,hot(1− x, 1) for the cold period (5)
TS,hot(x, 0) = TS,cold(1− x, 1) for the hot period (6)

A periodic, quasi-steady-state solution of the transport problem considered is obtained by repeatedly solving the
presented formulation, alternating the inlet conditions between the cold and hot cyles. This iterative solution proceeds
until an acceptable quasi-steady-state solution is reached. The selected stopping criterion is when the both effectiveness,
hot and cold, reach the same value (ε = εhot = εcold). The effectiveness of each process are given by:

εhot = 1−
∫ 1

0

Thot(1, t) dt, (7)

εcold =

∫ 1

0

Tcold(1, t) dt (8)

4. SOLUTION APPROACH

As usual in integral transform formulations, two variable changes are proposed in order to homogenize the boundary
condition.

T (x, t) = TH(x, t) + Tin, (9)
TS(x, t) = TSH(x, t) + Tin (10)

Resulting in the following homogeneous system.

τ
∂TH(x, t)

∂t
+
∂TH(x, t)

∂x
= NTU[TSH(x, t)− TH(x, t)] (11a)

C∗r
∂TSH(x, t)

∂t
= NTU[TH(x, t)− TSH(x, t)] (11b)

TH(0, t) = 0, (11c)
TH(x, 0) = To(x) + Tin, (11d)
TSH(x, 0) = Tso(x) + Tin (11e)
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The idea behind this proposed mixed methodology is to introduce an upwind numerical approach replacing the original
advective derivative and then apply the transformation of the problem. This procedure is the only step that differs from
the traditional GITT. In other words, the advection term is replaced by:

∂TH(x, t)

∂x
= Λ(TH , x, δ) (12)

where Λ(TH , x, δ) is the approximation rule of TH derivative in x direction which naturally depend on the step-size δ.
Applying the proposed approach (12) to the system (11), the partially discretized equation is obtained:

τ
∂TH(x, t)

∂t
+ Λ(TH , x, δ) = NTU[TSH(x, t)− TH(x, t)] (13a)

C∗r
∂TSH(x, t)

∂t
= NTU[TH(x, t)− TSH(x, t)] (13b)

TH(0, t) = 0, (13c)
TH(x, 0) = To(x) + Tin, (13d)
TSH(x, 0) = Tso(x) + Tin (13e)

As customary done in integral transform schemes, the solution approach consists on seeking an eigenfunction expan-
sion solution based on a integral transform pair. For this specific problem, two transform pairs are needed, one for the
fluid temperature:

Inversion → TH(x, t) =

∞∑
n=1

THn(t)ψn(x)

Nn
(14a)

Transform → THn(t) =

∫ 1

0

TH(x, t)ψn(x) dx (14b)

and another for the solid temperature:

Inversion → TSH(x, t) =

∞∑
n=1

TSHn(t)ψn(x)

Nn
(14c)

Transform → TSHn(t) =

∫ 1

0

TSH(x, t)ψn(x) dx (14d)

in which ψ are orthogonal solutions of a Sturm-Liouville eigenvalue problem associated with the x direction. An usual
choice within the considered framework is the simple one-dimensional Helmholtz problem:

ψ′′n(x) + µ2ψn(x) = 0, (15)
ψn(0) = 0, ψ′n(1) = 0, (16)

Nn =

∫ 1

0

ψ2
n dx (17)

where the last equation represents the norm of the eigenfunction. This eigenproblem has the simple solution:

ψn(x) = sin(µn x), with µn = (n− π/2)π for n = 1, 2, 3 . . . (18)

Applying the integral operator
∫ 1

0
•ψn dx to the transformed system (13) and using the transforms (equations (14b)

and (14d)) to the transformable terms and the inversions (equations (14a) and (14c)) to non-transformable terms, the
transformed system is obtained:

τ
∂THn(t)

∂t
+

∞∑
n=1

Am,n THm(t) = NTU(TSHn(t)− THn(t)) (19)

C∗r
∂TSHn(t)

∂t
= NTU(THn(t)− TSHn(t)) (20)

where

Am,n =
1

Nm

∫ 1

0

ψ′m(x)ψn(x) dx (21)
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The transformed initial condition for the first process is given by:

THn(0) =

∫ 1

0

(To(x)− Tin)ψn dx, (22)

TSHn(0) =

∫ 1

0

(To(x)− Tin)ψn dx (23)

and for the following processes are:

TH,coldn(0) =

∞∑
m=1

TH,hotm(1)
∫ 1

0
ψm(1− x)ψn(x) dx

Nm
+

∫ 1

0

ψn(x) dx (24)

TH,hotn(0) =

∞∑
m=1

TH,coldm(1)
∫ 1

0
ψm(1− x)ψn(x) dx

Nm
−
∫ 1

0

ψn(x) dx (25)

TSH,coldn(0) =

∞∑
m=1

TSH,hotm(1)
∫ 1

0
ψm(1− x)ψn(x) dx

Nm
+

∫ 1

0

ψn(x) dx (26)

TSH,hotn(0) =

∞∑
m=1

TSH,coldm(1)
∫ 1

0
ψm(1− x)ψn(x) dx

Nm
−

∫ 1

0

ψn(x) dx (27)

For this work, the discrete operator Λ is chosen to be:

Λ(f, x, δ) =
f(x)− f(x− δ)

δ
(28)

The solution of the transformed potentials is obtained by truncating the infinite system representation (19) to a finite
order and employing a commercially or publicly available dedicated ODE solver. In this work, the NDSolve routine,
available in the Mathematica software was employed.

5. RESULTS AND DISCUSSION
This section presents the results of the heat transfer problem of a counter flow regenerator solved by GITT and

the proposed mixed formulation. All the results shown in this section were calculated for quasi-steady-state and with:
τ = 10−3, NTU = 10 and C∗r = 1. Although not showed here, in the final paper, a validation table will display the ef-
fectiveness convergence with the truncation order (nmax) for GITT and a comparison of the final result with the literature
(Shah and Sekulic, 2002). For code validation purpose, the table 1 shows the effectiveness convergence with the truncation
order (nmax) for GITT† and a comparison of the final result with the reference work (Shah and Sekulic, 2002)‡.

Table 1. Effectiveness convergence for traditional GITT.

nmax ε†

50 0.7404
100 0.7392
150 0.7388
200 0.7386
250 0.7385
300 0.7384

Reference‡ 0.7375

The following figures display the results for the temperature profiles for different values of the discretization parameter
(δ), different times (t), different truncation order (nmax). In all figures a fully-converged GITT solution is plotted in gray
and traditional GITT in dashed black for comparisons.

Observing figure 1, it can be seen that in both subfigures, (a) and (b), that the orange curve, representing δ = 0.01, is
the one that most approaches the converged solution in gray. As can also be seen from these figures, as the δ parameter
is increased the oscillations are reduced. However, a higher spreading (slope reduction) of the temperature profile at the
wave front is seen due to the additional numerical diffusion introduced by the UDS approximation. In spite of these
observations, as the size of the discretization parameter is reduced, the GITT-UDS curves converge to the GITT curve,
such that the actual amount of numerical diffusion can be user-controlled. When comparing subfigures (a) and (b), one
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Figure 1. Hot period fluid temperature profile for several step-sizes and t = 0.00001.
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Figure 2. Hot period fluid temperature profile for several step-sizes and t = 0.0001.

clearly notices that the higher truncation order reduces the amplitude of oscilations and increases its frequency, due to the
higher-order eigenvalues included in the series representation.

Figure 2 display similar results as the previous one. The first thing that can be notice is that for higher times the
oscillation is lower. The observation of the curves leads to a conclusion that an optimum value of δ should depend on the
truncation order, naturally decreasing with the value of nmax. This can be specially seen on the red curves which with
nmax = 10 does not oscillate as much as it does when nmax = 20. In other words, δ = 0.1 is very large number for
nmax = 20.

6. CONCLUSION
In this work, a mixed formulation for solving convective heat transfer problems using integral transforms and upwind

approximation for the advective term, called GITT-UDS, is proposed. In order to test and verify this new approach, the heat
transfer problem of a counter flow regenerator is solved.The idea behind the methodology is to employ a discrete upwind
approximation to the advective term to introduce numerical diffusion and hence causing a reduction of the oscillation in
the solution.

The transformation of the whole problem with the approximated term was carried-out and a first-order upwind ap-
proximation (UDS) was introduced. The main objective of the proposed formulation was trying to improve the GITT
convergence in regions where traditional GITT solution lead to a highly oscillatory behavior. This is achieved by intro-
ducing numerical diffusion to the advective terms, as the GITT has better results for diffusion problems.

It was observed that the solutions with discrete advective term, UDS produced a significant reduction in the oscillation
of the solutions. Despite the reduction of oscillations provided by the proposed scheme, it became clear that an appropriate
value of the discretization parameter must be selected to avoid an exceedingly spreading of the solution due to numerical
diffusion. The results indicated that this value must decrease with an increasing truncation order; however, it can also
depends on other parameters such as the dimensionless time. As a result, an important suggestion for further research
involves the determination of the optimum value of δ. One can even propose a variable δ, which is function of x, in
order to adapt the approach locally inside the domain. This proposition is similar to the one used with the flux limiters
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introduced by TVD (Total Variation Diminishing) schemes.
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