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Abstract. Discrete models using Semi-Lagrangian advection depend on a good mechanism of interpolation because

they not only rely on the integration of the trajectories of fluid particles traveling in space but also on the evaluation of

quantities at determined points that do not necessarily match to the mesh points. The subject of this paper is to discuss and

to survey new capabilities of a high-order interpolation operator using cubic shape functions as well as to demonstrate the

reduction of errors originating from a Z-Type approach by considering directional derivatives over every element. This

capability translates into a good fit for the convective term embedded into the incompressible Navier-Stokes equations,

since the velocity at the departure point, whether it has to be interpolated, is found with more accuracy. Maximum error

value obtained is limited to O(10−3). A fairly good approximation is produced showing the influence of the directional

derivatives calculated over the edges of the element.
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1. INTRODUCTION

Discrete models using Semi-Lagrangian advection depend on a good mechanism of interpolation because they not
only rely on the integration of the trajectories of fluid particles traveling in space but also on the evaluation of quantities
at determined points that do not necessarily match to the mesh points. When evoking finite element spaces to generate the
discretization process, it is common for some cases to have the mesh points arranged so that they belong to a set of values
named degrees of freedom set, though this set may not be entirely made up only by the mesh points. This set depends on
the geometry of the finite element, the dimension n of a domain lying in the Rn space and certain requirements that are
related to a perfect structuration of function spaces that will be working over each element.

When an application requires more accuracy, it is necessary to think about how to reduce errors. As we have men-
tioned, Semi-Lagrangian methods are involved with particle trajectories and interpolation. The subject of this paper is to
discuss the second item and to survey new capabilities of a high-order interpolation operator using cubic shape functions
as well as to demonstrate the reduction of errors due to the interpolation. Zienkiewicz-Type (or Z-Type, in short) inter-
polation has been developed and experienced in incompressible fluid flow numerical simulations in the work by Oliveira
et al. (2011).

Hereafter we introduce some basilar concepts for our discussion. Setting the framework to the three-dimensional
space, i.e., n = 3, we say that T h is a tetrahedralization of a domain Ω ⊂ R3. It is convenient to define a finite element
as a triple (K,Pπ,Σ), where K is a tetrahedron, Pπ a set of polynomial or quasi-polynomial functions with degree ≤ π

and Σ as the set of degrees of freedom. Moreover, we require that Ω = ∪Mm=1Km, with K̊c ∩ K̊d = ∅ ∀c, d. Thus, T h is
composed of a family of tetrahedra. We denote by aj = (x1j , x2j , x3j), 1 ≤ j ≤ 4 each vertex of a tetrahedron, so that
the first index stands for direction and the second one for number of vertex. Henceforward, index i will be associated to
space directions.
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Paper is organized as follows: in the Section 2., we introduce the concepts of affine mappings in finite elements and
establish how to prepare the study of Z-Type interpolant; in the Section 3., we lay down and discuss the Z-Type interpolant,
its shape functions and how it works; Section 4.shows us some results of interpolation and error analysis; ultimately, we
make concluding remarks in the Section 5..

2. UNIT 3-SIMPLEX AND FINITE ELEMENT AFFINE MAPPINGS

Let (K,P,Σ) and (K̂, P̂ , Σ̂) be finite elements defined over the spacial domain and over a reference domain, respec-
tively. K can be mapped to the tetrahedron K̂ which is the unit 3-simplex, i.e., a regular tetrahedron whose edges sizes
are unitary. The vertices coordinates of K̂ are given by: â1 = (1, 0, 0), â2 = (0, 1, 0), â3 = (0, 0, 1) and â4 = (0, 0, 0).
Through an affine mapping, such as F := K → K̂, we get x̂ = F (x) = B(x), with x̂ ∈ K̂,x ∈ K. F is a mapping
defined byB, which is a square matrix that maps each point of K to a unique point in K̂.

Consider v = (v1, v2, v3) defined over K the velocity field of the fluid flow, where each of v1, v2 and v3 are real-
valued functions depending on the space and time, such that v̂ = (v̂1, v̂2, v̂3) be equivalent over K̂ to v. Similarly, let ∇
and ∇̂ be gradient operators defined over these domains, respectively. Now, it is important to define Σ in order to carry out
the interpolation over the reference domain. This operation is common in finite elements computations and some reasons
are given in Ciarlet (2002) (the most important for us would be that related to the theory of interpolation). Thereby, we
define Σ := {v(aj),∇v(aj) · (ak − aj); 1 ≤ j 6= k ≤ 4}. Consequently, not only the values of function, but also the
values of directional derivatives over the edges of each tetrahedron are required to develop our survey. It becomes possible
to take the values from Σ to Σ̂ through a mapping, so that Σ̂ turns into the set of degrees of freedom of the reference finite
element. Therefore, Σ̂ := {v̂(âj), ∇̂v̂(âj) · (âk − âj); 1 ≤ j 6= k ≤ 4} and we have

{∇ [v(aj)]} · (ak − aj) = {∇̂ [(v̂ ◦B)(aj)]} · (ak − aj) = {∇̂ [v̂(B(aj))] ∇̂ [B(aj)]} · (ak − aj), (1)

whence it follows that ∇ [B(aj)] is a second order tensor representing the Jacobian, once that the operators ∇ =(
∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
and ∇̂ =

(
∂
∂x̂1

, ∂
∂x̂2

, ∂
∂x̂3

)
lie in different frames and operate over a vector. “◦” is a symbol for a

“pseudo-composition” of functions, since we use derivation as the chain rule. We should note that from Eq. (1) the
derivatives belonging to Σ also are mapped to Σ̂ in order to complete the degrees of freedom required for the Z-Type
interpolation operator to be discussed in the Sec. 3..

If we name ξjk = ak−aj , and segregate∇v in the parcels∇1v =
(
∂v1
∂xi

)
,∇2v =

(
∂v2
∂xi

)
and∇3v =

(
∂v3
∂xi

)
, which

are the contributions of variations of the velocity for each direction, then the directional derivatives over the edges of a
tetrahedron on the spacial frame can be given by:

∇iv · ξjk =
∂v

∂ξjk
, (2)

Throwing in φ as a scalar field defined over R3, it is clear that ∇φ is a vector with three components, which we depict
geometrically in the Fig. 1. We see how the directional derivatives are decomposed over the edges of a tetrahedron in
space through ∇φ, whose origin is the vertex aj and A it is a point lying in the straight line of variation. A1, A2 and A3

are points belonging to each adjacent edge to aj and working in the sense of the Eq. (2), like the projections of ∇φ. In
fact, these points represent the directional derivatives. The punctured points identify the value in norm of the gradient at
each vertex. The decomposition of ∇φ in K is homologous in K̂ as it is pictured in Fig. 2. However, the value of the
projections differ from that over K because of the measure of the edges. Equation (1) tells us that ∇B, i.e., the tensor
associated to the Jacobian transformation, is responsible to carry over the behavior of the variations of the function from
K to K̂. In this example, n = 1, but the same idea can be extended to n ≥ 2.
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Figure 1: Directional derivatives of a scalar φ over the edges of a tetrahedron in the space.

Figure 2: Directional derivatives of a scalar φ over the edges of the unit 3-simplex.

3. DISCUSSION ABOUT THE FE Z-TYPE INTERPOLATION OPERATOR

The interpolation operator is denoted by I3. Due to the change of frame (see Eq. (1)), a not very discernible result at
first glance, holds, which is declared as

(̂I3v) = Î3v̂, (3)

claiming that what we get after carrying out the interpolation over K and take it away to K̂ through the change of
referential is the equivalent result of carrying out an interpolation over K̂, since that mathematically another interpolation
operator defined over K̂ should operate over v̂.

By invoking the linear functions λ(x̂), 0 ≤ λ(x̂) ≤ 1, which also are the barycentric coordinates over K̂, we reach

Î3v̂(x̂) =

4∑
l=1

v̂(x̂l)λl(x̂) +

4∑
j=1

4∑
k=1

[
∇̂v̂(âj) · (âk − âj)−

4∑
l=1

(v̂(âl)∇̂λl(x̂)) · (âk − âj)

]
λjk(x̂), (4)

where

λjk(x̂) =
1

2

[
λj(x̂)λk(x̂) + λ2j (x̂)λk(x̂)− λj(x̂)λ2k(x̂)

]
, 1 ≤ j, k ≤ 4, (5)

are a parcel of the shape functions of TE16 element established in Wang and Xu (2006) and ∇̂l(x̂) are the gradients of
the barycentric coordinates. Implicitly, the inner products are being reckoned through the space directions.

We have seen in Sec. 2.that the elements K ∈ T h are mapped to K̂ by an affine transformation. It was argued how
this change of frame just conveys the information of a function to a simpler domain without removing the interpolation
capability. Now, we turn to a survey by considering translations and rotations. Besides, we discuss how this latter process
still remains preserved, i.e., we show that the interpolation is well conserved under translation and rotation.

In order to pave the way to the numerical results, we render two operators for the geometric changes. Firstly, a
translation will be given by a simple displacement of the points of K̂, i.e., by fixing a vector d = (d1, d2, d3) and defining
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K̂d := K̂ + d as the whole K̂ displaced in space. Either, it would be read as

K̂d := {y ∈ R3; y = x̂+ d}. (6)

In second place, a rotation matrix gathering the Euler’s proper angles, which are a triple (ψ, θ, ϕ), for 0 ≤ θ ≤ π and
0 ≤ ψ,ϕ ≤ 2π, relating two systems of coordinates. Here, we will use a simple rotation matrix. More specific studies
can be found in the treatise on rotational motion by Gray (1918). We define that rotation matrix by

R(ψ, θ, ϕ) =

cos(θ) cos(ϕ) −cos(ϕ) sin(ψ) + sin(ϕ) sin(θ) cos(ψ) sin(ϕ) sin(ψ) + cos(ϕ) sin(θ) cos(ψ)

cos(θ) sin(ψ) cos(θ) cos(ψ) + sin(ϕ) sin(θ) sin(ψ) −sin(ϕ) cos(ψ) + cos(ϕ) sin(θ) sin(ϕ)

−sin(θ) sin(ϕ) cos(θ) cos(θ) cos(ϕ)

 , (7)

whose operation is to carry out a composition of partial rotations on the points of K̂. It suffices accompany this effect by
observing a certain “invariance” of the interpolation at the interior points, as we will see forth. Thus, through (6) and (7),
a huge range of numerical experiments can be done to test out the interpolation.

4. NUMERICAL RESULTS

Some results are introduced in this section by considering the interpolation of the vector field v̂ over K̂ on a tridimen-
sional grid with 9261 nodes. Since each component of v̂ is interpolated in a similar fashion, it is enough survey the results
given by only one of them.

The series of figures forward opens up the numerical results we have implemented. A cubic polynomial is being

(a) (b)
Figure 3: (a) depicts a rotation of F̂2 by R(π/6, 3π/7, π); (b) depicts a translation of F̂3 by d =
(1/4 ln(75), 3.1,−15/13).

interpolated over the unit 3-simplex domain. The small points in black encircled by colors are the fitted points forming
the interpolation. Colors are representing the function value restricted to each face of the unit 3-simplex, namely, red to
face 1, green to face 2, blue to face 3 and magenta to face 4. Figure 3 shows two plots of function just restricted to the faces
2 and 3 of K̂. These faces are defined as F̂2 and F̂3, respectively, because they are opposed to the correspondent vertices
â2 and â3. Similarly, the two remaining faces obey this relation. Because of the continuity and the affine mapping, the
values of v̂ over the edges of K̂ are such as:

v̂|F̂mn
:= v̂|F̂m

∩ v̂|F̂n
, m 6= n. (8)

The four triangles (when they appear) spreaded over the plots pin the original points of each vertex before suffering
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(a) (b)
Figure 4: (a) depicts a rotation of F̂3 by R(π, π/2, π/4); (b) depicts a translation of F̂4 by d = (−1.4,−2, 0.3).

Figure 5: (a), (b), (c) and (d) depict v̂|F̂1
, v̂|F̂2

, v̂|F̂3
and v̂|F̂4

for the cubic case, respectively.

any transformation. In Fig. 3, at left we have a simple rotation of F̂2 by R(π/6, 3π/7, π), whereas at right we have a
simple translation of F̂3 by d = (1/4 ln(75), 3.1,−15/13). These transformations do not harm the interpolation, which
is ensured by Eq. (3).

Other examples of transformations are depicted in Fig. 4. Now, F̂3 is rotated by R(π, π/2, π/4) and, additionally,
F̂4 is translated by d = (−1.4,−2, 0.3). As we had already commented, uncountable and arbitrary transformations can
be set by changing the parameters for angles and displacement. Forth, Fig. 5 gathers the plots of function over all faces
originally (i.e. without suffering transformations) by exhibiting them apart, accordingly to (8).

In order to enrich our survey, we also plot below some examples of interpolation when v is reduced to a quadratic
curve or to a plane. Figure 6 shows the same as Fig. 5 for the quadratic case. In turn, Fig. 7 shows the plots for the linear
case. For both two latter cases, we could apply the same tests already performed, by concluding that the interpolation
would not be harmed.

All the results from the mechanism of interpolation exhibit an utmost capability for the treatment of the convective
term embedded into the incompressible Navier-Stokes equations, since the velocity at the departure point, whether it has
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Figure 6: (a), (b), (c) and (d) depict v̂|F̂1
, v̂|F̂2

, v̂|F̂3
and v̂|F̂4

for the quadratic case, respectively.

to be interpolated, is found with more accuracy.

Figure 7: (a), (b), (c) and (d) depict v̂|F̂1
, v̂|F̂2

, v̂|F̂3
and v̂|F̂4

for the linear case, respectively.

Finally, an brief discussion about the error of interpolation is given. L2-norm error between v̂ and Î3v̂ is plotted in
Fig. 8 for F̂1. It is seen that the minimum error is checked at the boundary, whereas it enhances as it goes towards the
center. However, the maximum error value is limited to O(10−3), according to a purpose we have been aspiring. We can
observe that along the edges of F̂3, the approximation is well done and this result reasonably verifies the influence of the
directional derivatives calculated over them which extends to the interior of K̂. Clearly, some deviation of Î3v̂ from v̂

is more sharply observed in the middle of the face, where there is presence of a more acute curvature of v̂. Figure 9 is a
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Figure 8: L2-norm error between v̂ and Î3v̂.

complementary error contour with v̂ scaled exaggeratedly over the domain.

Figure 9: Error contour of Î3v̂ over F̂1.

5. CONCLUSION AND FUTURE PROSPECTS

The main purpose of our essay was to weave a mechanism of interpolation for Semi-Lagrangian schemes in order
to get more accuracy in fluid flow simulations through the Finite Element Method. The results we previously analyzed
showed that error diminished over the element of reference. However, the greatest deviation occurring nearby the center
of K̂ may be related to an incomplete polynomial basis, since we have used 16 degrees of freedom for each component
of v. For cubic approximations, the presence of some additional degrees of freedom, such as those that are included at
the midpoints of the faces, may afford more accurate results inasmuch as they could gauge the deviation at that central
regions.

Rotation and translation tests were a way to launch an expectation that the interpolation works suitably even than the
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element suffers these geometric changes and also attends to accuracy requirements for fluid flow numerical simulations.
When keeping this capability to capture the behavior of a cubic function, the interpolation just reinforces its own validity
for the intended applications.

Future prospects for this research are: to apply this Z-Type interpolation methodology in more complex simulations;
to develop comparative methods including derivative calculations and to study improvements by integrating this approach
into a more robust computational code.

6. REFERENCES

Ciarlet, P., 2002. The Finite Element Method for Elliptic Problems. SIAM, New York, United States.
Gray, A., 1918. A Treatise on Gyrostatics and Rotational Motion. MacMillan and Co., London, England.
Oliveira, G., Mangiavacchi, N. et al., 2011. “A semi-lagrangian scheme for fluid flow simulations with a zienkiewicz-type

finite element interpolation”. In 21st International Congress of Mechanical Engineering.
Wang, M. and Xu, J., 2006. “Some tetrahedron nonconforming elements for fourth order elliptic equations”. In Report

AM290 from PennState University.

7. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.


	INTRODUCTION
	UNIT 3-SIMPLEX AND FINITE ELEMENT AFFINE MAPPINGS
	DISCUSSION ABOUT THE FE Z-TYPE INTERPOLATION OPERATOR
	NUMERICAL RESULTS
	CONCLUSION AND FUTURE PROSPECTS
	REFERENCES
	RESPONSIBILITY NOTICE

