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Abstract. This paper presents a closed-form analytical solution for calculating the effectiveness of parallel-flow balanced

and symmetric heat regenerators using the Generalized Integral Transform Technique (GITT). The problem is analyzed

in a Eulerian form, in which both the fluid streams and the regenerator matrix move in cross flow through when a fixed

position in space is analyzed. While most solutions of periodic flow exchangers are based on models that follow a channel

motion in the regenerator (Lagrangian form), the alternate Eulerian form allows a periodic solution in terms of the

regenerator angle and axial position (flow direcion) to be obtained. The usage of the GITT with linear algebra, finally

allows the regenerator effectiveness to be calculated in by a simple closed-form expression. The results are verified by

comparing to a finite-volumes solution and a very good convergence rate is seen.
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1. INTRODUCTION

Regenerative heat exchangers have a substantial number of applications in several processes where indirect heat trans-
fer between two process streams with a compact construction is required. The traditional thermal design of these ex-
changers are based on solving a system of two energy transfer equations, one for the process streams and the other one
for the solid matrix. The heat transfer theory for thermal theory for heat regenerators, or periodic heat exchangers, is well
established and can be found on textbooks (Kays and London, 1998; Shah and Sekulic, 2002). The first formulation can
be traced by to the early works of Hausen (1930), and a method of analysis based on physically meaningful dimensionless
groups for the regenerator problem was presented by Coppage and London (1953). Different than recuperator problems,
in which closed-form expressions for the effectiveness of the exchanger can be obtained in terms of the number of transfer
units and capacity ratios, for regenerative heat exchangers, there are apparently only numerical and approximate solutions
for the effectiveness calculation. The classic text by Shah and Sekulic (2002) clearly states that “no closed form exact
solution of the theoretical model is available presently.” Bac̆lić (1985) obtained a closed-form expression for the effec-
tiveness for balanced and symmetric regenerators using the Galerkin method, and later on for unbalanced and asymmetric
exchangers (Romie and Bac̆lić, 1988; Bac̆lić and Dragutinovic, 1991). Numerical solutions for the problem were also
obtained by a number of other authors such as Lambertson (1958), Theoclitus and Erckrich (1966) and Willmott and
Knight (1993).

Different the the previous numerical and approximate solutions, this paper proposes a fully-analytical solution to the
parallel-flow problem in balanced and symmetric regenerators using the Generalized Integral Transform Technique (Cotta,
1990, 1994). The regenerator problem is analyzed in an Eulerian form in which instead of following a channel during
its rotation through the matrix, a fixed position is chosen and both the fluid flow and the matrix move through it in a
cross-flow like arrangement. Effectiveness results are compared with those of a finite volumes solution, showing a very
good agreement.

2. PROBLEM FORMULATION AND INTEGRAL TRANSFORM SOLUTION

A balanced, symmetric, and parallel (concurrent) flow regenerator is considered. Using the usual simplifying as-
sumptions for heat regenerators (Shah and Sekulic, 2002), the following normalized equations are obtained, for the fluid
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streams and the solid matrix, during the hot and cold periods, respectively:

∂T ∗

∂t∗h
τ∗dw +

∂T ∗

∂z∗
= 2 NTUo (T ∗m − T ∗), C∗r

∂T ∗m
∂t∗h

= −2 NTUo (T ∗m − T ∗), for 0 ≤ t∗h ≤ 1, (1)

∂T ∗

∂t∗c
τ∗dw +

∂T ∗

∂z∗
= 2 NTUo (T ∗m − T ∗), C∗r

∂T ∗m
∂t∗c

= −2 NTUo (T ∗m − T ∗), for 0 ≤ t∗c ≤ 1. (2)

An alternate formulation may be employed by bearing in mind the fact that the regenerator operates at a constant
angular velocity such that:

θ = π t∗h, for 0 < θ ≤ π, θ = π + π t∗c , for π < θ ≤ 2π, (3)

which leads to the following eulerian-type formulation for the heat transfer in the periodic exchanger:

π τ∗dw
∂T ∗

∂θ
+
∂T ∗

∂z∗
= 2 NTUo (T ∗m − T ∗), π

∂T ∗m
∂θ

= −2 NTUo

C∗r
(T ∗m − T ∗), for 0 < θ ≤ 2π, (4)

where the inlet conditions are given by:

T ∗(0, θ) = 1 for 0 ≤ θ ≤ π, T ∗(0, θ) = 0 for π ≤ θ ≤ 2π, (5)

The integral transform solution of the problem is based on the following integral transform pairs:

T ∗m =

∞∑
i=0

Ȳ ∗i (z∗) Ψ̃i(θ), Ȳ ∗i (z∗) =

∫ 2π

0

T ∗m(θ, z∗) Ψ̃i(θ) dθ, (6)

T ∗ =

∞∑
i=0

T̄ ∗i (z∗) Ψ̃i(θ), T̄ ∗i (z∗) =

∫ 2π

0

T ∗(θ, z∗) Ψ̃i(θ) dθ, (7)

where the eigenvalue problem is a Helmholtz problem with periodic conditions:

Ψ̃′′ + µ2 Ψ̃ = 0, Ψ̃(0) = Ψ̃(2π), Ψ̃′(0) = Ψ̃′(2π), (8)

which gives the following solutions:

Ψ̃i = cos
(
i/2 θ

)/√
Ni for i even, Ψ̃i = sin

(
(i+ 1)/2 θ

)/√
Ni for i odd, (9)

where the norms are given by:

N0 = 2π, Ni = π (for i > 0). (10)

The transformation of the problem is started by multiplying the equations by the eigenfunction and integrating within
the θ-domain, which leads, after simplification and substitution of the inversion formula to the non-transformable terms, to:

dT̄ ∗i
dz∗

− π τ∗dw

∞∑
j=0

Ai,j T̄
∗
j = 2 NTUo (Ȳ ∗i − T̄ ∗i ), −π

∞∑
j=0

Ai,j Ȳ
∗
j = − 2 NTUo

C∗r
(Ȳ ∗i − T̄ ∗i ), (11)

where the matrix coefficients are given by:

Ai,j =

∫ 2π

0

Ψ̃′i Ψ̃j dθ. (12)
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If system (11) is truncated to a finite order it can be written in vector form:

dT̄ ∗

dz∗
= (π τ∗dwA − 2 NTUo I) T̄ ∗ + 2 NTUo Ȳ

∗,

(
− πC∗r

2 NTUo
A + I

)
Ȳ ∗ = T̄ ∗, (13)

and the two previous equations can then be combined into a single form:

dT̄ ∗

dz∗
=
(
π τ∗dwA − 2 NTUo I + 2 NTUoM

−1) T̄ ∗, where M = − πC∗r
2 NTUo

A + I (14)

This system can be solved analytically, yielding the following closed-form solution in terms of a matrix exponential:

T̄ ∗ = C f̄ , where C = exp
(
− F z

)
, F = −π τ∗dwA + 2 NTUo I − 2 NTUoM

−1 (15)

and f̄ is the transformed inlet condition vector, given in terms of the following coefficients:

f̄i =

∫ π

0

Ψ̃i(θ) dθ. (16)

For balanced and symmetric exchangers, the effectiveness is calculated through:

ε = 1 − T ∗h,out = T ∗c,out (17)

where the average outlet temperatures, for the hot and cold periods are given by:

T ∗h,out =
1

π

∫ π

0

T ∗(θ, 1) dθ, T ∗c,out =
1

π

∫ 2π

π

T ∗(θ, 1) dθ. (18)

With the inversion formulas, this corresponds to calculating:

T ∗h,out =
1

π

∞∑
i=0

T̄ ∗i (1)

∫ π

0

Ψ̃i(θ) dθ, T ∗c,out =
1

π

∞∑
i=0

T̄ ∗i (1)

∫ 2π

π

Ψ̃i(θ) dθ, (19)

such that an analytical expression for the effectiveness is readily obtained:

ε =
1

π

∞∑
i=0

T̄ ∗i (1)

∫ 2π

π

Ψ̃i(θ) dθ =
1

π

(
exp(−F ) f̄

)
· b, (20)

where the vector b is given by the coefficients:

bi =

∫ 2π

π

Ψ̃i(θ) dθ. (21)

3. RESULTS AND DISCUSSION

Table 1 presents effectiveness values calculated with the current formulation for different truncation orders imax and
different combinations of NTUo and C∗r values for a case with τ∗dw = 10−5. The results are compared with a four-digit
converged Finite Volume Method solution of the same problem. As can be seen from these results, the GITT solution
has a remarkable convergence behavior, producing six-digit converged effectiveness values with 10 terms in the series for
almost all cases. The exception is the lower NTUo and lower C∗r values; however, even for this case, 10 terms yield 5
converged digits in the effectiveness values.
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Table 1. Calculated effectiveness values for different NTUo and C∗r values with τ∗dw = 10−5.

imax NTUo = 5, C∗r = 1 NTUo = 10, C∗r = 1 NTUo = 5, C∗r = 2 NTUo = 10, C∗r = 2
1 0.094715 0.094715 0.094715 0.094715
5 0.613497 0.704636 0.459895 0.398172

10 0.658419 0.749507 0.504939 0.443207
20 0.658421 0.749507 0.504939 0.443207
40 0.658422 0.749507 0.504939 0.443207
80 0.658422 0.749507 0.504939 0.443207

FVM 0.6584 0.7495 0.5049 0.4432

4. CONCLUSIONS

This paper presented a closed-form analytical solution for calculating the effectiveness of balanced and symmetric
parallel-flow regenerators in terms of the number of transfer units, the matrix-to-fluid heat capacity ratio and the dimen-
sionless dwell time. The methodology was based on the Generalized Integral Transform Technique.
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