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Abstract. The Local Differential Quadrature Method with Radial Basis Functions (LDQM-RBF) is a collocation method

for numerical solution of partial differential equations. It has been recently proposed for treating complex discretizations

including structured and non-structured meshes and meshless schemes. In this work, numerical experiments are carried

out using a Poisson-type equation in a unit square domain with uniform equidistant meshes and various stencils. The

influence of relevant parameters of LDQM-RBF (multiquadric shape parameter c, mesh size h and stencil structure)

is discussed. Then, two applications of the LDQM-RBF in physical problems are made: a problem of incompressible

hydrodynamics and a problem of natural convection, both in a square domain. Results are compared with the literature

and discussed.
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1. LOCAL DIFFERENTIAL QUADRATURE METHOD WITH RADIAL BASIS FUNCTIONS

By the Local Differential Quadrature Method (LDQM) a partial derivative of any order of a function in Rn in a
reference point x can be approximated by a weighted sum of function values at some neighboring discrete points including
x itself (support nodes of x). For example, the approximation method for m-th derivative with respect to x1 of a function
f(x) at a point xi of Rn, x = (x1, x2, . . . , xn), can be expressed by (Ding et al., 2005):

∂mf(xi)

∂xm
1

=

ns∑
j=1

wmx1
i,j f(xj), i = 1, 2, ..., N (1)

where xj , j = 1, . . . ns are the support nodes of x and wmx1
i,j denotes the respective weighting coefficients. The index i

refers to the reference node in a global discretization of N nodes while j is a local index for the respective support nodes.
This approach can be naturally applied to any dimension. In the case of a structured mesh the local support is called
stencil.

The key of LDQM is the determination of weighting coefficients, wi,j . For this, a set of ns basis functions is required.
When Basis Radial Functions (RBF) are employed the method is referred to LDQM-RBF. Among the various RBF, the
multiquadric function (Mq) is chosen due its to accuracy, stability and efficiency (Franke, 1982). The basis functions, ϕk,
generated by the Mq are:

ϕk(x) =
√
(‖x− xk‖2)2 + c2, k = 1, 2, ..., ns (2)

where x = (x1, x2, ...xns
) and c is a shape parameter. Substituting this set of radial basis functions in Equation (1), we



Proceedings of the ENCIT 2012
Copyright c© 2012 by ABCM

14th Brazilian Congress of Thermal Sciences and Engineering
November 18-22, 2012, Rio de Janeiro, RJ, Brazil

obtain the following system of linear algebraic equations for the weighting coefficients:

∂mϕk(xi)

∂xm
1

=

ns∑
j=1

wmx1
i,j ϕk(xj), k = 1, 2, ..., ns (3)

In matrix form, the vector of weighting coefficients {w}i can be obtained by:{
∂mϕk(xi)

∂xm
1

}
= [A]{w}i (4)

After the solution of the system, the values of the weighting coefficients can be used to approximate the derivatives.
For the Mq, Micchelli (1986) showed that the matrix [A] may have cases of singularity. On the other hand, Hon and
Schaback (2001) proved that these cases are extremely rare and can be disregarded in practical situations.

When using the formulation LDQM-RBF for an equidistant uniform mesh, the weighting coefficients are calculated
only once and stored for any domain discretization.

2. TESTS OF LQDM-RBF FOR A POISSON-TYPE EQUATION INCLUDING FIRST ORDER DERIVATIVES

This section aims to evaluate some relevant numerical information about the LQDM-RBF for PDE solutions. For this,
the LQDM-RBF was applied to a equation of Poisson-type including a non-linear term with first order derivatives in a
two-dimensional unitary square domain. Several parameters were tested, among them the multiquadric shape parameter
c, the mesh size h and the stencil structure (number and distribution of nodes).

The equation used is shown below:

∂2u

∂x2
+

∂2u

∂y2
+ u

(
∂u

∂x
+

∂u

∂y

)
= f(x, y) (5)

The boundary conditions are given by the Dirichlet condition, i.e., the u values are given at the domain boundary.
Similarly, when using local stencils that make use of nodes outside the domain, the u values for these points must also
be known.

Given an analytical solution u(x, y) is possible to obtain the f(x, y) according to Eq. (5). For numerical tests, we
adopted the analytical solution up, taken from Shu et al. (2003), given by:

up(x, y) =
5
4 + cos(5.4y)

6 + 6(3x− 1)2
(6)

After discretization of Eq. (5) by LQDM-FBR, the numerical solution is obtained by the method of Successive Over
Relaxation (SOR) with the first derivatives terms treated explicitly. The relative error used to measure the accuracy of the
method is defined as

‖ε‖ =

√∑Nint

i=1 (unum − uexact)2i√∑Nint

i=1 (uexact)2i

(7)

First, the mesh was fixed at 41×41 and the shape parameter c was varied in the interval 0.06 ≤ c ≤ 2.00 for the
stencils shown in “Fig. 1”. The results for the variation of relative error with the shape parameter is shown in “Fig. 2a)”.
It may be noted the dependence of optimal values of c in relation to the structure of the stencils, as well as numerical
instabilities for some stencils and for shape parameter above a certain value. for some from a certain value (c). Best
results are produced as the extent of the stencil increases.

For verifying the influence of the shape parameter c in the numerical error in conjunction with the mesh refinement, the
stencil 1 was fixed and the shape parameter varied in the same interval as before with different meshes. It may be noted
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Reference node
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Figure 1. Node number and distribution for the tested stencils.

in “Fig 2b)” a change in the slope of the curves for values for the shape parameter between 0.4 and 0.5. The tendency
of variation of the relative error and therefore there optimal values of c are independent of the mesh refinement h. These
results support theoretical studies of Bayona et al. (2010).

Figure 2. Relative error variation with the shape factor (a) for the 41x41 mesh and different stencils and (b) for the stencil
1 and different meshes.

3. LDQM-RBF APPLICATIONS IN FLUID DYNAMICS AND HEAT TRANSFER PROBLEMS

The LDQM-RBF was used for obtaining numerical solutions of two classical benchmark problems of incompressible
2-D flow: (a) the driven cavity flow problem with a constant velocity imposed on the upper wall (“Figure 3(a)”); (b)
the natural convection in a square enclosure with adiabatic horizontal walls and isothermal vertical walls subjected to a
temperature difference (“Figure 3(b)”). The stream function-vorticity formulation in non-dimensional form was employed
in both cases. For problem (b) a superconductor model was used for treating exterior nodes close to the isothermal walls.

(a) (b)

Figure 3. Domain and boundary conditions for the flow problems studied in this work.

“Figure. 3” illustrates the domains and the boundary conditions for each case. The solutions of the equations of stream
function were obtained by the SOR method and the equations of vorticity and energy (in the case of natural convection)
were obtained by the explicit Euler method. The stencils 1, 2 and 3 were used. The shape parameter is fixed at 0.5 and
the mesh was 101× 101.
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The velocities at the vertical and horizontal center lines in problem (a) are deployed in “Fig. 4” for number Reynolds
Re = 400 and compared with results obtained by Ghia et al. (1982). The present results are in good agreement with those
of the literature.

Figure 4. Results for the velocities in the vertical an horizontal centerlines in problem (a) (Re = 400).

For problem (b), the average Nusselt number for Ra = 105 was calculated in the hot wall (“Tab. 1”) and compared
with results obtained by Shu et al. (2003). The average Nusselt number obtained by the authors was 4.573 (5338 nodes).
One can note a good agreement of results for stencil 1 only. Stencils 2 and 3, although potentially more accurate, require
the super-conductor model which is not quite compatible with the flow conditions in the physical domain. Better schemes
for address this limitation should be considered in the near future.

Table 1. Average Nusselt number for Ra = 105.

stencil 1 stencil 2 stencil 3
101× 101 4.590 4.178 4.179
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