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Abstract. The objective of this work is to use the Double Integral Method to solve problems of transient unidimensional 
conduction heat transfer in semi-infinite body with a non homogeneous Dirichlet, non homogeneous Neumann and 
Robin boundary conditions. The double integral method is a mathematical technique that can be used to obtain 
approximate solutions to transient heat transfer problems. This method transforms the non-linear boundary value 
problem into an initial-value problem, whose solution can often be expressed in a closed analytical form. In the double 
integral method the partial differential equations are integrated twice, the first integration being performed within the 
domain and the second along the phenomenological distance. This double integration allows the gradient vector at the 
surface to be approximated using the Simple Integral Method. Thus improvements can be attained by changing the 
derivative at the boundary by an  integral relation, since the process of differentiation amplifies any difference between 
the assumed temperature profile and the exact solution. This double integration allows the calculation of the gradient 
vector at the surface to be approximated by an integral relationship, thus replacing the calculation of the derivative in 
the boundary which amplifies any difference between the exact solution and the assumed profile, by an integral 
relationship. In this work, the results obtained were compared with analytical exact solutions found in the literature 
and approximate analytical solutions provided by the method of Goodman to show that the temperature profiles 
obtained with the double integral method are better than those presented by Goodman, the improved temperature 
distribution being closely related to improvements made by the double integral method in the approximation of heat 
flow along the body 
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1 INTRODUCTION 
 

The proliferation of numerical and computational techniques and the availability of software packages have 
neglected analytical methods for solving heat transfer problems. There is no doubt that computer programs represent a 
breakthrough especially in problems of irregular geometries. However, it is important to study and develop exact and 
approximate analytical methods so that computer programs are optimized demanding less processing time. In this sense 
this work makes use of the Double Integral Method proposed by Volkov (1965) to solve boundary layer equations. In 
his work the author conducted a thorough study of the Karman-Pohlhausen (1921) Simple Integral Method and 
proposed a refinement to this method by means of the double integration of the boundary layer equations. 

The results presented by Volkov (1965) are better than those obtained by Karman-Pohlhausen method and this fact 
encouraged investigators to develop other studies using this method. Tse-Fou (1976) addressed the boundary layer 
problem considering large variations of the Prantdl number. El-Genk &Cronenberg, (1979) presented two articles, the 
first to test the double integral method to verify the accuracy of the solution in phase change problems and the second to 
obtain an approximate solution for the growth or shrinkage of an ice thickness on a cold plate in contact with a forced 
flow. In the present work the double integral method was applied to transient heat transfer problems in semi-infinite 
body with boundary conditions of the first, second and third kinds. In each case the profiles used are polynomials of 
degrees two and three. The objective is to show the influence of increasing the degree of the polynomial in the 
description of the temperature profile and heat flow along the body.  
 
2 APPLICATIONS OF THE DOUBLE INTEGRAL METHOD 
 

In this work, all the applications of the double integral method considered a semi-infinite solid with the geometry 
illustrated in Fig.1. A semi-infinite solid has as its main characteristic to extend infinitely in all directions except one in 
a way that this solid has a unique identifiable surface. If a sudden change in the boundary condition is imposed on this 
surface, unidimensional transient conduction occurs. This type of geometry provides a useful idealization in many 
practical problems, for example, it can be employed in the determination of transient heat transfer near the earth’s 
surface or can be used to approximate the transient response of a finite solid as a thick plate. This last application is 
reasonable for the initial portion of the transient regime, during which the temperature inside the plate at points distant 
from the surface are essentially not influenced by the change in the boundary conditions. 
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Figure 1. Semi-infinite solid 

 
 

2.1Application of the double integral method with boundary condition of first kind 
 

The double integral method will be applied to solve a unidimensional thermal conduction problem involving a semi-
infinite body extending along the axis 0>x , having a non-homogeneous Dirichlet type boundary condition at mx 0= , 
initially at temperature of zero degrees Celsius. Thus, the physical system is well established and the mathematical 
model is described by the equation of heat conduction and the corresponding boundary conditions given below. 
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By applying the double integral method in Eq. (1) results: 
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and approximating the gradient vector at the boundary using the simple integral method, 
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Substituting Eq. (8) into Eq. (7): 
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Assuming cubic and quadratic polynomial profiles for the temperature distribution given by Eq. (10) and Eq. (11) 
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Substituting Eq. (10) and Eq. (11) in Eq. (9) results in the following ordinary differential equations:  
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Solving both ordinary differential equations with the initial condition given by Eq. (14) and subsequently replacing 

the quadratic profile given by Eq. (10) and the cubic profile given by Eq. (11) the temperature distributions along the 
semi-infinite body is completely determined. 
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Table 1 show the temperature profiles and calculate the heat flux at the surface for similarity method, integral and 

double integral single. 
Table 1. Comparison of temperature distribution profiles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 shows the temperature distribution profiles obtained by similarity, simple and double integral methods. It 

may be observed that the double integral method with quadratic profile exhibits better accuracy to describe the 
temperature distribution when compared with Goodman’s method with cubic profile. This improved accuracy is related 
to the way each of the methods describe the heat flow along the body, as shown in Figure 3. 
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Figure 2. DIM quadratic profile Figure 3. DIM flux quadratic profile 
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Figure 5 shows the temperature distribution obtained by the methods discussed above, except that in this case the 
double integral method is used with cubic profile. As it is shown in Fig.3, the curve described by the double integral 
best fits the exact analytical solution, when compared to the approximation made by the simple integral method. Figure 
4 exhibits the distribution of the thermal flow across the body. Notice that the approximation made by the double 
integral method for heat flux at the boundary is a bit coarse. However throughout the body this approach is best suited 
to the analytic solution when compared to the method of Goodman. Thus it is evident that the best accuracy in the 
description of the temperature profile is closely related to better precision in the description of the flow along the body. 
 
 

   
 
 
 

2.1 Application of the double integral method with boundary condition of second kind. 
 
Consider a semi-infinite plate extending along the axis 0>x  initially at temperature of zero degrees Celsius, 

assuming its boundary at a specified heat flux and equal to
2
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tf = . Thus the physical system is completely 

determined and the mathematical model is described by the conduction equation and the boundary conditions given 
below. 
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Considering the quadratic and cubic polynomial profiles for the temperature distribution given respectively by Eq. 

(20) and Eq. (21), 
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Applying the double integral method in the heat conduction Eq. (15)  
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Figure 5. DIM cubic profile 
 

Figure 4. DIM flux cubic profile 
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Substituting the temperature profiles given by Eq. (20) and Eq. (21) into Eq. (22) yields the corresponding ordinary 
differential equations 
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The ordinary differential equations Eq. (23) and Eq. (24) are solved with the initial condition given by 
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Table 2 shows a comparison of the solutions for the profiles obtained with the similarity method, simple integral 

method with cubic profile and double integral method with quadratic and cubic profiles. These solutions were used to 
calculate the temperature at the surface.  

 
Table 2. Evaluation of surface temperature 
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Figure 6 shows the approximation of the temperature distribution performed by both integral methods with 

quadratic profile compared to the exact analytical solution. It may be observed that the double integral method exhibits 
higher accuracy for distances shorter thanm1.0 . As shown in Fig. 7, better approximation in the description of the 
temperature profile for distances less thanm1.0 , is linked to the higher accuracy of the double integral method in 
describing the heat flow in this same distance. 
 

 
  
 

Figure 8 shows the temperature distribution obtained with the similarity method, as well as the approximations 
performed by the integral methods with cubic profile. By analyzing this figure it is noticeable that significant 
improvement in the temperature profile results when compared with Fig. 5 where the integral methods were used for a 
quadratic profile. As shown in Fig. 8, the approximation of the heat flux is described by a parabolic profile when using 

Figure 6. MID quadratic profile Figure 7. Flux MID profile quadratic 
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a temperature cubic profile, which is reflected in a significant increase in the description of heat flow along the body 
and hence a better precision in the description of the temperature profile. 
 

 
 
 
 

2.3 Application of the double integral method with Robin’s boundary condition 
 

Here the double integral method is applied to solve a problem involving one-dimensional thermal conduction in a 
semi-infinite body which is initially at zero degrees Celsius and with a boundary condition at mx 0= of Robin type. 
Assuming that initially the boundary condition has its most generic form which is convenient when particularized, has 
the problem has the complete physical description, and its mathematical model can be given by heat conduction 
equation and their boundary conditions described below. 
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Considering the quadratic and cubic polynomial profiles for the temperature distribution given by Eq. (31) and Eq. 

(32)  
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Making a change of variable indicated by Eq. (33) and Eq. (34), respectively, and substituting the quadratic and 

cubic profile it is possible to rewrite these equations as a function of the surface temperature: 
 

),0()( tTtz =             (33) 

),(

2
)(

tzf

z
t =δ             (34) 

),(

3
)(

tzf

z
t =δ             (35) 

 
Therefore, 
 

Figure 8. DIM cubic profile Figure 9. DIM flux cubic profile 
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Applying the double integral method in the heat conduction Eq. (26) 
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After manipulating the previous expression results 
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Substituting the quadratic profile Eq. (36) and the cubic profile Eq. (37) into Eq. (36) yields: 
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Considering that the function ),( tzf given by the boundary condition Eq.(29) is defined as shown in Eq.(39) and 

substituting it in Eq.(40) and Eq.(41) the results are their ordinary differential equations. 
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The above differential equations are separable and the solution of each one takes the following forms: 

 









−+





















−









−

+


















−
−=









0

00

2

1ln
9

4
1

1

1

9

4

1

1
1

9

4

3

4

z

z

z

z
z

z
t

k

h α       (45) 



















−
−+








−+























−









−

=








0

0
2

0

2

1

1
16,01ln6,01

1

1
6,0

3

4

z

zz

z

z

z
t

k

h α       (46) 

 
The exact analytical solution presented by Carslaw and Jaeger (1959) is given by: 
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The equations Eq. (45) and Eq. (46) can be drawn in terms of two of the three dimensionless parameters  
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Figs. (10) and (11) show the graphs of the exact analytical solution, as well as the solutions obtained by the double 

integral and simple integral method. These graphs were drawn with
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In Fig.10 both integral methods are using the quadratic profiles in their approaches.  As it can be seen, the of the 
double integral method has low sensitivity to the choice of the profile, whereas the approximation made by simple 
integral method was found to be a bit coarse when compared with the other two methods. Fig. 11 shows both integral 
methods using cubic profiles. It may be noticed a significant improvement in the approximation of the simple integral 
method while the double integral method presented only marginal improvements. It is practically impossible to 
distinguish each of the integral solutions in this figure. 
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Figure 10. DIM quadratic profile Figure 11. DIM cubic profile 


