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Abstract. The transport of ions in a domain containing a membrane is studied using the theory of electrokinetic flows. 
The equations are solved by the lattice Boltzmann method. The physical characteristics of the phenomena are 
described, followed by the equations and the numerical solution. Results applied for a biological membrane show good 
agreement with analytical predictions. 
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1. INTRODUCTION 

 
Electrokinetic flows can be found in numerous applications such as material manufacturing by electroplating and 

electrowinning, separation processes, micro-flow devices, batteries, fuel cells, MEMS (micro electro-mechanical 
systems) and also as the driving force of many biological phenomena (He and Li, 2000). Besides its multi-component 
nature, it is also necessary to solve the electrostatic interaction and, in some applications, chemical reactions and energy 
transfer (Wang and Kang, 2010). It is common in this kind of flow the need to solve several spatial and temporal scales 
requiring the combination of several types of physical theories and multi-scale computational approaches (Capuani et 
al., 2004). 

In this article, we are interested in understanding the underlying physics occurring in an electrokinetic flow when a 
membrane is introduced, separating two domains with different ion concentrations. The focus are the natural or artificial 
selective double layer membranes, constituted of a hydrophobic core and hydrophilic surfaces. This kind of membrane 
is found, mainly, in biological systems and synthetic biotechnology applications. There are a number of publications on 
the macroscopic behavior of the flow near this type of membranes (e.g.: Qian and Sejnowski, 1989 ; Lopreore et al., 
2008; etc.). On the other hand, there is also a great effort in describing the structure of those membranes mainly using 
experimental techniques, such as x-ray crystallography (Doyle et al., 1998; Gouaux and MacKinnon, 2005; etc.); or 
simulations, as Molecular Dynamic methods (e.g. :Benz et al., 2005; etc.). Nonwithstand, we have found a lack of 
methods linking those kinds of approaches. 

Here we solve the concentration of ions and electrical potential using the lattice Boltzmann method applied to a 
system composed of two sub-domains separated by a semi permeable membrane. The membrane properties control the 
flux of ions across it. This approach can be used in many problems, mainly in nanoscale biotechnology and chemical 
processes. We believe that by exploring the problem using a mesoscopic method, it may allow the understanding and 
characterization of new phenomena important for the design and analysis of the many applications.  
 
2. PROBLEM DESCRIPTION 
 

When the fluids near a membrane are aqueous, the ions are linked with the water molecules. As the surface of such 
membranes possesses hydrophilic surfaces, it maintains the ions near them but not allowing the diffusion through it. On 
the other hand, this membranes can transport ions by specific channels (in biological membranes, e.g., this channels are 
constituted of proteins spanning the lipid bilayer). These ion channels are specific for each ion and, combined with the 
isolation properties of the membranes, enables the controlled transport of ions.  

The different concentration of ions existed in domains A and B creates an electrical potential across the membrane, 
Vm, which can be calculated as: 
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where V A and V B are, respectively, the electrical potential on the membrane surface with domains A and B. 
The chemical potential, µ for any ion i can be calculated as: 

0 lni i i iRT a z FVµ µ= + +  (2) 
where 0

iµ  is the electrical potential of pure i, R is the gases universal constant, T is the system temperature, ai is the ion 
activity, zi is the ion valence and F is the Faraday constant. 

For a very thin membrane that permits the passage of only one type of ion i (i.e. if there is only one kind of ion 
channel) the membrane potential, relative to V A, is equal to the equilibrium potential, Ei, of that ion and is calculated by 
the Nernst equation: 
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where A
iC  and B

iC  are, respectively, the concentration of ion i on the membrane surface with domain A and B. 
If the membrane is in rest and if there is other types of ion channels, the net flux through it will be zero and the 

potential across it is calculated by the Goldman equation: 
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where VR is called the resting potential and Pi is the velocity in which the ion i cross the membrane. This velocity Pi 
depends on the quantity and type of ion channels the membrane has.  

Generally, biological cells need to have a negative membrane potential. The most common ions involved in the 
process of maintain such potential are the potassium and sodium, being the exterior of the cell (domain A) more 
concentrated in sodium, and the interior (domain B), in potassium. As the membrane has much more channels for the 
passage of potassium, the membrane potential is slightly more positive than it would be if there were no sodium 
channels. Imagine now a situation where this membrane would have its sodium channels closed. The system would be 
in a steady state and the membrane potential would be the reversal potential for the potassium. If, suddenly, the sodium 
channels were opened, that ion would enter the cell. The influx of sodium would happen because of the electric and 
chemistry driving forces. But, as the sodium enters the cell, the membrane potential will be less negative and so, 
potassium would be expulsed from it. This process continues until a steady state is achieved. Fig. 1 shows this 
phenomenon. 

 

 
Figure 1. Resting potential establishment. (a) Membrane with only potassium channels. (b) Opening of sodium 

channels. (c) Steady state re-establishment. (d) Membrane potential versus time. Obtained from Kandel et al. (2000). 
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Equations (3) and (4) can only be used to calculate electrical potentials in stationary situations. For the calculation of 
Vm in dynamic systems we choose to use a capacitive model adapted from Qian and Sejnowski (1989).  
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i im
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where d is the cell diameter, Cm is the specific capacitance of the membrane and the subscribe R refers to resting values. 
Qian and Sejnowski didn’t take the concentration changes on domain A into account. Equation (5) is a modification 

of the original model to include the influence of those changes. 
 

3. MACROSCOPIC EQUATIONS 
 

We consider that the fluids of domains A and B are electrolytic aqueous dilute solutions of ions. The ion-ion, and 
ion-dipole interactions are neglected as also heat exchange and advection. Under these conditions, the electrokinetic 
equations are, respectively, the Nernst-Planck equation and the Poisson equation: 
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where Di,efe is the effective diffusive constant for ion i; V is the local electrical potential; r represents the position, ρr  is 
the charge density; ε r  is the dimensionless fluid dielectric constant, 0ε  is the permittivity of the vacuum, e0 is the 
charge of a proton and Av is the Avogadro number. 

And the motion equations for the mixture are: 
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where ρ  is the mixture density, u is the macroscopic velocity of the mixture, p is the pressure, ν  is the viscosity and F 
is a source term 
 
4. NUMERICAL SOLUTION 
 

Equations (6) to (9) represent the macroscopic effect of an electrokinetic flow. However, in micro and nano scale 
problems (such as the neighboring of a cell membrane), that description can be insufficient. Because of that, recently, 
electrokinetic flows are solved using the lattice Boltzmann method (e.g.: He and Li, 2002; Melchionna and Succi, 2004; 
Capuani et al., 2004; Wang and Kang, 2010 among many others). The lattice Boltzmann method is based on evolution 
equations of particle distribution functions. The computation domain consists of a net, the lattice, composed by sites, in 
each of them; there are a finite number of particles and velocities that follows collision and propagation rules. 

In this work, a two dimensional domain is divided into two sub-domains (the above mentioned domains A and B) 
separated by the membrane. The corresponding evolution equation for the Nernst-Planck equation can be found in He 
and Li (2000): 
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where k represents each velocity direction, ( ), , ,i k i kf f t= r  is the evolution equation for the concentration of ion i in the 

velocity direction k in position r and time t; ( ), , ,,i k k t i t if f tδ δ+ = + +r ξ  is the evolution equation for the concentration of 

ion i in the position itξ+ δr , and time it t+δ , i.e., after the propagation, itδ  is the time step for the ion i and kξ  is the 
discrete velocity. The equilibrium distribution for a D2Q9 lattice is: 
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The relaxation time is related to the diffusivity such as: 
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where δ x  is the distance between two sites. 
And the concentration is calculated as follows: 
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For solving the Poisson equation the Chai and Shi (2008) model is used. The evolution equation is equal to: 
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where Vτ is the relaxation time, Vtδ  is the time step for the electrical potential, R is the right side term of the Poisson 
equation and DV is a artificial diffusion calculated as: 
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For a D2Q9 lattice we found: 
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And the electrical potential is: 
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The membrane is introduced as an internal boundary condition when the time steps are equal. A flux, Ji (normal to 
the membrane), is calculated for each ion: 
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where gi is the conductance of the membrane for ion i, related to Pi, and the superscripts “chem.” and “elec.” accounts, 
respectively, for the portions of the flux which are induced by chemical and electrical forces. 

Based on Eq. (23) particles are added, or subtracted, in the nodes representing the surface of membrane with each 
side of the domain: 
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where e is the membrane thickness and tδ  is the biggest time step. 
In this work, the above mentioned mechanisms are investigated. The advection is negligibly and, so, the Navier-

Stokes equation is not solved, i.e., u = 0. Besides, the electrical potential influence on the solution of the ions 
concentrations, i.e., the source term in equation (10), is not introduced.  
 
5. RESULTS AND DISCUSSION 
 

The method was applied to a hypothetical membrane surrounded by aqueous solutions containing sodium, Na+, and 
potassium, K+. A slightly perturbation is introduced to observe how the steady state is achieved. This perturbation is 
applied as differences from the resting concentrations. A negative ion is included to maintain the macroscopic 
eletroneutrality. 

Resting values for a typical neuron cell, used here as an example, are showed next on Table 1. A square domain 
was used with prescribed concentrations on top and bottom boundaries and periodic conditions on lateral boundaries. 
The particles were introduced in a linear profile with average vales equals to the initial ones. Two types of simulation 
were made. In the first one, only potassium channels exists, i.e., gNa = 0.0 S/m2. In a second simulation, it is allowed for 
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the sodium to cross the membrane, with a condutante of gNa = 0.12 S/m2. The resting potential for the first simulation is 
- 80.02 mV and, for the second simulation is – 62.68 mV. Other parameters used are: Cm = 0.01 F/m2; d = 1 µm; e = 34 
Å; PK / PNa = 25; gK = 3 S/m2; gNa = 0.12 S/m2; T = 298.2 K. 
 

Table 1. Initial and resting values. 
Species and 

domain 
Resting values 

Ci (mM)  
Initial values 

Ci (mM) 
Species and 

domain 
Resting values 

Ci (mM)  
Initial values 

Ci (mM) 
Potassium on A 6 1 Sodium on A 145 162 
Potassium on B 135 140 Sodium on B 18 1 

Anions on A 151 151 Anions  on B 153 153 
Obs: resting values for potassium and sodium were obtained from Zigmond (1999). 
 
Figure 2 shows the potassium molar concentration and electrical potential profiles for the first scenario simulated 

(absence of sodium channels). 
 

 
Figure 2. Results of simulation 1: profiles for different time steps until establishment of the steady state. (a) 

Potassium molar concentration profiles. (b) Electrical potential profiles. 
 
Figure 3 shows the results for the second scenario where there are sodium channels. 
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Figure 3. Results of simulation 2: profiles for different time steps until establishment of the steady state. 

(a) Potassium molar concentration profiles. (b) Sodium molar concentrations profiles. (c) Electrical potential 
profiles. (d) Evolution of membrane potential with time. 
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The fluxes of ions across the membrane are showed on Table 2. 
 

Table 2. Fluxes across the membrane. 

SIMULATION 1 

 Time = 
8.54 x 10-6 s 

Time = 
8.54 x 10-5 s 

Time = 
8.54x 10-4 s 

Steady State = 
1.71 x 10-3 s 

Flux of 
Potassium 

(10-6 mM.m/s) 

Chemical 
driving force -3.41 -2.72 -2.49 -2.49 

Electrical 
driving force 1290 324 2.49 2.49 

Total flux 1290 321 0.000452 ~ 0 

SIMULATION 2 

  Time = 
8.54 x 10-6 s 

Time = 
8.54 x 10-5 s 

Time = 
8.54x 10-4 s 

Steady State = 
1.04 x 10-3 s 

Flux of 
Potassium 

(10-6 mM.m/s) 

Chemical 
driving force -3.41 -2.72 -2.49 -2.49 

Electrical 
driving force 1290 321 2.00 2.00 

Total flux 1290 318 -0.489 -0.489 

Flux of 
Sodium 

(10-6 mM.m/s) 

Chemical 
driving force 0.108 0.0746 0.0667 0.0667 

Electrical 
driving force 51.6 12.8 0.08 0.0799 

Total flux 51.7 12.9 0.147 0.147 
Obs.: positive fluxes are in the direction A to B, i.e., from the exterior to the cell interior. 

 
As it can be seen, the simulations converge to constant concentration and electrical potential profiles, as expected, 

because the fluxes are very small. Interesting to see is that for the first time steps, the electrical potential diverges. 
Probably, the concentration perturbations were too big causing those unrealistic values.  

Another important result is showed on Fig. (3d). It shows the differences between the membrane potential calculated 
from Eq. (5) and (1). As the result from Eq. (1) is the real value of the membrane potential, we can infer that the Eq. (5) 
model is just suitable for membranes near the resting state.  
 
6. CONCLUSION 
 

The results found in table 2 agree with the behavior described by Fig. 1. However, it was expected that, for the 
steady state of simulation 2, the module of the total flux of potassium should be equal to the module of the total flux of 
sodium. This difference will be investigated deeply in the future, as so the influence of the electrical potential on the 
concentration profiles.  
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