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Abstract. This work aims to apply the methodology of design of experiments in an experimental model of an 

evaporative condenser built in small scale, keeping geometric similarity to real size equipments. The experimental 

condenser has a bundle of 35 copper tubes and is assembled with 6 rows inside a glass enclosure to allow for water 

and air flows visualization. The system operates with R22 as working fluid under different water and air mass flow 

rates. The large numbers of parameters involved in this experiment makes it hard to investigate its relationship and a  

Artificial Neural Network (ANN) is used to simulate the condenser behavior on a more controlled base, allowing for 

the statistical assessment by Design of Experiments (DoE) distinguishing the parameters that actually influence the 

phenomena. The ANN model achieved a satisfactory prediction of the rejected heat rate with a coefficient of 

determination R² of 94.7% and a root mean square error (RMSE) of 0.0259kW. The application of DoE analysis of 

simulated data resulted in a correlation to predict the overall heat transfer coefficient (R²) of 94.7%. The higher 

deviation found between the experimental and the correlation was 13.28%. 
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1. INTRODUCTION 

Heat exchange efficiency can be increased by the aid of phase change phenomena. Many applications in air 

conditioning and refrigeration fields use this effect: heat from a hot fluid is transferred to atmospheric air through direct 

or indirect contact in sensible and latent ways to a second fluid, usually water, which evaporates cooling the hot fluid. 

Due to the simultaneous heat and mass transfer in evaporative heat exchanger, the process becomes more complex in 

comparison to the conventional system, where a sensitive phenomenon of exchange of energy takes place. 

 Within many factors apparently influential in process and phenomena present in this study, it is difficult to 

determine objectively what parameters are important to be controlled or monitored. The only way, in agreement with 

Vick Junior (1992), to eliminate the subjectivity of an assertion and discussions about the reliability of a conclusion is 

through the Design of Experiments (DoE) methodology. 

Zukowski Junior (1999) used the DoE to optimize an absorption refrigeration system. Based on determination of 

appropriate response such as exergy efficiency, COP and ice production rate, we used the methodology that consisted of 

a series of experimental tests in their equipment. It was utilized the response surface methodology associated with the 

two-level factorial design for system optimization. Results indicate the adequacy of methodology applied in this study. 

Antunes (2011) applies response surface methodology associated with two level factorial design to compare three 

different configurations of automatic refrigeration system. 

Sacks et al. (1989) describe some DoE applications in traditional computational models. The authors report that 

output results of many computational models are restricted only to data fitting, without the perception of what is 

possible from application of DoE enabling experimenter to do uncertainty analysis of the prediction model with a solid 

statistical basis. 

Ertunc and Hosoz (2006) presented application of Artificial Neural Network (ANN) to predict performance of an 

evaporative condenser used in a refrigeration system. A experimental system was used for experiments were performed 

varying the evaporator capacity, the air and water flows and air dry bulb temperature and humidity in equipment 

entrance. Based on experimental data an ANN model was built to provide the condenser heat rejected, refrigerant mass, 

the compressor power and the performance coefficient as output simulation data. Simulated results presented error in 

the range of 1.90 to 4.18% when compare with actual results. 

2. EXPERIMENTAL SETUP 

 Acunha Junior and Schneider (2013) assembled an experimental laboratorial rig to perform controlled tests (Figure 

1), following the ANSI/ASHRAE 64-1995 standard, based on a calorimetric essay methodology at controlled 

environmental conditions. 
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Figure 1. Test facility scheme with its main devices (Acunha Junior and Schneider, 2013) 

 

In the experiment reported by Acunha Junior and Schneider (2013), tests were conducted along approximately 2 

hours in steady state conditions. The average values of the physical parameters were statistically analyzed in order to be 

synthesized in a consolidate record, called hereby the experimental sample.  Environmental conditions were 

stabilized for each sample, but they were intentionally varied from sample to sample. The complete investigation 

generated a 40 sample data set, built under the same heat dissipation rate at the evaporator and without replacement of 

the sump water. 

Data assessment enabled to identify the volumetric flow of air and volumetric flow of spray water as the only 

controlled parameters, pointing out an unbalancing among the number of measured parameters to the actual controlled 

ones. Due to those limitations, experimental data was used to train an Artificial Neural Network, allowing for choosing 

and ranging a greater number of parameters and then to better assess the behavior of the evaporative condenser. 

3. SIMULATION METHODOLOGY 

Artificial Neural Networks (ANNs) are computational structures similar those present in the brain and used to 

simulate learning functions of human nervous system. Haykin (2001) defined a neural network as a massively parallel 

distributed processor made up of simple processing units called neurons, the basic units of an ANN. It’s capable of 

learning from inputs, generating different outputs from those used in their training. According to Hagan (2002), the 

learning capacity of an ANN makes it more flexible and powerful than a traditional parametric formulation, allowing 

for the modeling of extreme complexity phenomena and also to handle satisfactorily with noise and incomplete data. 

The analysis of complete data set of experiment lead to the identification of some key parameters, which were 

chosen as the input ones for the ANN training. Table 1 displays theses parameters in accordance to Figure 1, and 

identifies their experimental range. Water and air mass flow rates (respectively,      and      ) were not directly 

measured on the rig, but calculated after the data of the flow density. 

 

Table 1. Input data ranges used in ANN training. 

 

Parameters Range 

Spray water temperature (Tsw) 22.0°C – 25.5°C 

Dry bulb temperature at the entry of condenser (Tdb,in) 19.7°C – 23.5°C 

Wet bulb temperature at the entry of condenser (Twb,in) 15.5°C – 19.3°C 

Condensation temperature of R22 (Tr) 28.0°C – 31.0°C 

Spray water mass flow rate (    ) 0.075kg/s – 0.115kg/s 

Air mass flow rate through the EC (     ) 0.105kg/s – 0.185kg/s 

 

A Three-Layer Feed-Forward ANN with learning algorithm of back propagation. Weights were adjusted through 

Levenberg-Marquardt optimized training algorithm (Hagan, 2002), also employed by Ertunc et al. (2006) for similar 

applications. 
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 The performance of an ANN can be evaluated with by the Root Mean Square Error (RMSE), given by 

 

      
 

 
        

 

 

   

 (1) 

 

where N is the training data set size, a is the desired output and y is the simulated value. The agreement between 

predicted and actual values can be evaluated through the Determination Coefficient (R²) shown in Eq. (2), which 

qualifies the model and its capacity to prediction.  

 

     
        

  
   

   
  

   

 (2) 

 

The experimental data set, composed of 35 selected samples of Acunha Junior (2010) experiment, was divided 

randomly into three groups: 70% for training, 15% for validation and 15% for testing. The training procedure consisted 

firstly to calculate the RMSE for every iteration, and then back-propagate the error by adjusting the ANN weights, until 

the value of RMSE reached a satisfactory value or the interruption of the procedure whenever a limit number of 

iterations were attended. To help prevent the ANN overfitting, the simulation procedure was periodically interrupted 

and its outputs were compared to a selected data set for validation. At the very end of the simulation, some final results 

were checked against experimental data. MATLAB
®
 7 with an ANN toolbox was used to perform the simulation.   

The ANN performance is sensitive to the network configuration, leading to trial and error process. Best results were 

obtained with a two layer network, with 8 neurons in the first layer and 7 neurons in the second one. 

In Figure 2 are plotted ANN model outputs versus experimental values for EC rejected heat rate (      ) that present 

a RMSE of 0.0259kW and a R² of 94.7%. These results indicate a good agreement of ANN model to the experimental 

data, on despite of the large number of involved variables. For the purpose of the present work, the neural model 

achieved the objective of simulating a real experiment and allowed for a parametrical investigation. 

 

 
 

Figure 2. Experimental versus ANN output values of       . 

4. RESULTS 

Whenever combined effects of two or more parameters are involved on coupled phenomena, DoE is a useful 

methodology. It takes into account parametric combinations and detects their interactions. DoE allows for collecting 

appropriate data and generate valid and objective conclusions, enabling to implement a regression model to fit 

experimental data considering interaction effects of each parameter (Montgomery, 2001). 

DoE has three basic principles: replication, randomization and blocking. Randomization refers to the order of 

experiments determined randomly. Blocking is a design technique used to increase the accuracy of comparisons 

between parameters of interest, been useful to reduce or eliminate the variance transmitted by uncontrollable variables 

or noises (Werkema and Aguiar, 1996). According to Montgomery (2001), replication has two important properties: 

estimates the experimental error and gives a more accurate parametric behavior of the experiment. In this work, isn’t 

applied the principles of replication and randomization because the experiments are simulated and outputs will not vary 

with replications or with order of experiments (Almeida Filho, 2006). 
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The statistical analysis was based on the ANOVA (ANalysis Of VAriance) methodology, detailed in Montgomery 

(2001) and Box et al. (2005), and used ANN output to obtain an appropriate set of parameters to DoE application. A 

factorial experiment 2
6
, i.e. with two levels for each parameter, was constructed totalizing a set of 65 simulated 

experiments: 64 factorial points and 1 center point. Table 1 shown the parameters with higher and lower values assumed 

to factorial points and the mean value on each range are used to define the central point. In this work, the MINITAB
®
 

16 software was utilized in statistical analysis. 

As can be seen in Table 2 all parameters and their interactions with calculated p-values. Basically, the p-value or 

calculated probability is the estimated probability of rejecting the null hypothesis of a study question when that 

hypothesis is true. In present study, the null hypothesis is the influence of parameters and their interactions in response 

variable (       . The confidence level (β) as defined to 0.95 and the significant level (α) as defined to (1-β), which 

means that they are significant at 5% with confidence level of 95%, that is to p-values less than 0.05 (or 5%) accept the 

null hypothesis. 

 

Table 2. ANOVA results for 2
6
 factorial design with center point for        response variable. 

 

Parameters Sum of Squares Mean Square p-value 

Main Effects 6.58434 1.09739 0.000 

Tsw 0.69312 0.69312 0.000 

Tdb,in 0.6626 0.6626 0.000 

Twb,in 3.12965 3.12965 0.000 

mair 1.54696 1.54696 0.000 

Tr 0.30338 0.30338 0.009 

msw 0.24862 0.24862 0.017 

2
nd

 Order Interactions 1.51251 0.10083 0.016 

Tdb,in*Twb,in 0.85226 0.85226 0.000 

Twb,in*msw 0.32071 0.32071 0.007 

Tdb,in*mair 0.10674 0.10674 0.104 

Tsw*Tdb,in 0.09811 0.09811 0.118 

Tr*Tdb,in 0.07225 0.07225 0.177 

Tr*mair 0.01769 0.01769 0.498 

Tr*Tsw 0.01494 0.01494 0.533 

Tr*msw 0.01225 0.01225 0.572 

mair*msw 0.0075 0.0075 0.658 

Tsw*msw 0.00292 0.00292 0.782 

Tdb,in*msw 0.00293 0.00293 0.782 

Tsw*Twb,in 0.00197 0.00197 0.820 

Tr*Twb,in 0.00147 0.00147 0.844 

Tsw*mair 0.00067 0.00067 0.894 

Twb,in*mair 0.00008 0.00008 0.964 

3
rd

 Order Interactions 0.80618 0.04031 0.425 

Tsw*Twb,in*mair 0.24687 0.24687 0.017 

... ... ... ... 

Erro Residual 0.85777 0.03729 - 

Nonlinearity 0.00147 0.00147 0.848 

Lack of Fit 0.85629 0.03892 - 

Total 6.58434 1.09739 0.000 

 

In Table 2 can be observed that all main parameters are relevant in heat rejection rate with 5% of significance, 

because obtained p-values less than 0.05. Likewise in 2
nd

 order interactions only Tdb,in*Twb,in e Twb,in*     were 

significant, and in 3
rd

 order interactions, only interaction Tsw* Twb,in *      obtained with prescribed significance. The 

nonlinearity effects aren’t influential in rejected heat rate, so a linear model could be appropriate. According to 

Montgomery (2001), the 3
rd

 order and higher interactions are negligible in most cases therefore the high order 

interactions were used to determinate lack of fit error since isn’t replication of experiments making it impossible 

calculate pure error (Box et al., 2005). 

Figure 3 shows the most significant effects of each parameter on the mean response of the rejected heat rate, with a 

significant level of 5%, while Figure 4b brings 2
nd

 order effects on that same output.  
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Figure 3. Graph of main effects of each parameter over the mean response variable (       . 
 

 
 

Figure 4. Graph of interactions effects of each parameter pair over mean response variable (       . 
 

It is possible observe the impact on output of all parameters, with a special remark to Twb,in, the most significant 

one. Tr, Tsw and       lead to a direct variation on       , whereas Tdb,in, Twb,in and      behave on the opposite sense. 

Figure 4 presents experiment effects of 2
nd

 order and confirms interactions between Tdb,in *Twb,in (with        negative 

influence) and Twb,in*     (with        positive influence). Red dots represent center points used to evaluate nonlinearity 

effects of parameters and their interactions. 

Surfaces displayed on Figure 5 show the behavior of the EC rejected heat rate        for 5 pairs of independent 

parameters, spanning along their experimental range, while the remaining experimental parameters were taken as fixed 

values, around the mean value of their respective ranges.   

Figure 5a displays        as a function of the condensation temperature Tr and the spray water temperature Tsw. It 

can be seen that there is a gain of heat released to the external air throughout the EC even with the reduction on the 

thermodynamic cycle efficiency, due to the increase of both temperatures. 

Figure 5b shows the interactions of inlet air dry bulb and wet bulb temperatures Tdb,in and Twb,in, affecting 

significantly       . The greater range span of each of these parameters, the greater is the potential of heat exchange 

through the water film and the air flow. This behavior is even more stronger for lower Tdb,in values. In case of 

Tdb,in*Twb,in, which their difference represents the relative humidity of input air flow, verified a rejected heat rate 

reduction in function of air flow saturation condition through the EC and reducing latent exchange energy potential. 

Figure 5c shows        as a function of the inlet air wet bulb temperature Twb,in and the spray water temperature Tsw. 

there was a directly proportional increase on heat rejection in regard to Tsw and an inversely proportional one for Twb,in. 

Likewise, Figure 5d shows        as a function of Twb,in and Tr and the similar behavior it is noted. 

Figure 5e presents        as a function of the air mass flow rate       and the inlet air dry bulb temperature Twb,in, 

showing that the combination of higher values of       together with lower values of Twb,in increase EC heat rejection 

rate because air mass flow rate exchange increase in EC driven by exchange latent potential increase (by difference of 

partial steam pressure). 
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Figure 5. Graphs of EC rejected heat rate (      ) as function of (a) condensation temperature and spray water 

temperature, (b) dry bulb and wet bulb temperature, (c) spray water temperature and wet bulb temperature, (d) 

condensation temperature and dry bulb temperature and (e) air mass flow rate and dry bulb temperature. 
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Equation (3) presents a model for the predict capacity of mean rejected heat (      ) as a function of 6 independent 

parameters. The adjusted regression was obtained by factorial design, based on experimental data, and its behavior is 

shown in Figure 6a, for a correlation coefficient R² of 79.3% which signifies that model explains 79.3% of the 

variability of mean rejected heat. The maximum error found was 13.28%. Figure 6b displays a standardized residual 

histogram for Eq. (3), showing a distribution close to the normal one. 

 

                                                                          

                                                                                                                 
(3) 

 

  
 

Figure 6. (a) ANN simulated values versus DoE predicted values and (b) the histogram of standardized residual. 

 

Figure 7 shows a graph with theoretical rejected heat rate calculated using some classical correlations to external 

heat transfer coefficient presented in Facão (1999) and the internal heat transfer coefficient obtained with correlation of 

Chato (1930) (apud Bejan, 1995). Coefficients were calculated upon experimental data from 35 independent and steady 

state experimental samples. The correlations of Acunha Junior (2010), Niitsu et al. (1967) (apud Facão, 1999) and Eq. 

(8) was best approached real values. It should be noted that correlations of Acunha Junior (2010) and this work aims to 

estimate the rejected heat rate differently of others that have been developed only for determining heat transfer 

coefficient between film of water (around the tubes) and external air flow. 

 

 
 

Figure 7. Overall heat transfer coefficient calculated with experimental data and correlations. 

5. CONCLUSIONS 

When performing experiments often statistical considerations that are relevant in an experimental study are 

unknown. Not always how the experiments are conducted allow us establish a complete relationship between all factors 

involved in a process or system. The greatest care with measurements acquired from sensors and data acquisition 
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devices or with accuracy in applying correct techniques to measure experimental quantities often are not observed with 

equal care in design of experiment. 

In this study, it is possible to verify the simulation techniques efficiency to obtain an ANN from experimental data 

to design of experiments application, allowing the performance of experiments which would be complex in practice.  

The methodology of PE enabled simulated complex experiments could be performed simply and with good 

accuracy with a maximum error of 13.28%. Thus, this work could apply the proposed methodology with great success. 
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