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Abstract. The effect of inertia in the flow of viscoplastic fluids through an expansion followed by a contraction is  
analyzed. The mechanical behavior is modeled by the Generalized Newtonian Fluid constitutive equation, with the  
viscosity function given by the SMD equation (de Souza Mendes and Dutra, 2004). The conservation equations of  
mass and momentum, together with the constitutive equation are approximated by a Galerkin least-squares (GLS)  
formulation  in  terms  of  pressure  and  velocity.  A  sensitivity  analysis  is  performed,  aiming  at  investigating  the  
influence of inertia and viscous forces on the fluid dynamics. The topology of yield surfaces is obtained, and proved  
to be strongly related to inertia and yield stress amounts considered in the flow. Moreover, the results are compared  
to other results from the literature, which consider fluid elasticity. It is observed that inertia and elasticity effects lead  
to different flow patterns.
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1. INTRODUCTION

This paper presents numerical results of inertial flow of viscoplastic fluids through an abrupt expansion followed by 
a contraction in an axisymmetric channel. Viscoplastic fluids are present in several important industrial processes. In  
the petroleum industry, for example, the drilling fluid of the wells are viscoplastic materials. Several other examples can 
be  found  in  food  and  cosmetics.  There  are  also  paints,  pharmaceuticals,  and  biological  fluids  which  present  a  
mechanical behavior of a fluid viscoplastic. The pattern of the these flows is characterized by two distinct regions: the 
unyilded regions where the stresses are less than the elastic limit stress and strain is extremely low, and the yilded  
regions, which appear where the stress level is higher than the yield stress. The topology of the zones define some 
important characteristics of the flow, as the amount of fluid that may remain stagnant in a specific region of the flow or  
pressure drop along this flow. Therefore, the study of the pattern of flow and determining how it is affected by the  
parameters ruling is of great interest. The main focus of this paper is to present numerical results of the effects of inertia  
in a complex geometry. And therefore analyze the influence of rheological and kinematic parameters that govern the 
flow,  the  morphology  of  the  rigid  zones  of  viscoplastic  fluid  flow  through  an  expansion  followed  by  an  abrupt 
contraction in an axisymmetric duct.

The mixed Galerkin least-squares (GLS) approximations for viscoplastic flows is performed in this article.  The 
selected model is the Souza Mendes and Dutra model – or simply SMD model – introduced by Souza Mendes and  
Dutra (2004). This GLS methodology – introduced by Hughes et al. (1986) for the Stokes problem, was later extended 
to mixed Navier-Stokes equations in Franca and Frey (1992) and multi-field Navier-Stokes equations in Behr  et al.  
(1993).  It  does  not  need  to  satisfy  the  compatibility  condition  arisen  from finite  element  sub-spaces  for  the  pair  
pressure–velocity – the known Babuška-Brezzi condition. This is accomplished by adding mesh-dependent terms which 
are functions of  residuals  of  the flow governing equations,  evaluated  element-wise.  In  this way,  the compatibility 
condition may be circumvented and the methodology still remains stable – employing simple combinations of equal-
order finite element interpolations.

The numerical solution of  steady flows of SMD fluids on an axisymmetric expansion-contraction is obtained and 
compared with some results from the literature. The viscoplastic effects are evaluated for a dimensionless flow rate (U*) 
from 0.25 to 1.5; the inertia effects are evaluated for a rheological Reynolds number (Rer) from 0.5 to 25 and the power-
law index (n) from 0.4 to 1.0 . All the numerical results proved to be physically meaningful and in accordance with the 
related literature.

2. MECHANICAL MODELING



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

This work considers that the fluid is incompressible in steady flow and the governing equations are expressed in a  
fixed Eulerian system. Let ∈ℜ

ndim  where ndim denotes the number of spatial dimensions, being the fluid domain 
with boundary  . The continuity and momentum conservation equations, with the imposed boundary conditions, can 
be respectively expressed as:

∇ uu=−∇ p2 ̇ div Duf in 

div u=0 in 

u=u g on  g
u

[2 ̇D u− p 1]n=th on h

   (1)

where u is the velocity vector, p the hydrostatic pressure,  the fluid density, f the body force vector, ug the imposed 
velocity boundary condition, th the stress vector, D is the stain rate tensor given by

D u=
1
2

∇ u∇ uT     (2)

and  ̇ is SMD viscosity function defined as

 ̇=1−exp−0 ̇ /0
0

̇
K ̇ n−1    (3)

where K is the consistency index, n is the power-law exponent and 0 is the yield stress. For stress values around the 

yield stress ( ≈0 ), the strain rate goes from  ̇ 0=0/ 0 (the end of the high Newtonian viscosity region), to 

̇1=0/ K 1/n (the beginning of the power-law viscosity region) – see, for details, de Souza Mendes et al. (2007) – 
often increasing orders of magnitude. This property, amongst round-off errors during the numerical computations, can  
lead to a  troublesome determination of  the location where  the material  “actually”  begins  to  flow – see,  for  more  
discussion, Santos et al. (2011).

In order to obtain the dimensionless governing parameters, the rheological dimensionless normalization introduced 
by de Souza Mendes (2007) is applied. Therefore the following set of dimensionless quantities are introduced:

x*=
x
Lc

; u*=
u

̇c Lc

; p*=
p
0

;  *=

0

; f *=
Lc f
0

   (4)

where ̇ c is the characteristic strain rate of the flow and Lc is the characteristic length– in this work taken equal to

̇1 and r (the main tube radius, see Fig. 1), respectively.
Hence, substituting the dimensionless variables introduced above into the boundary value problem given by Eq. (1),  

the dimensionless mixed formulation for inertia flows of SMD fluids is given by:

Re r∇
*u*u*∇* p*−2 *̇*div* Du*=f * in *

div*u*
=0 in 

*

u*
=

u g

̇1 Lc

on  g
u*

[2
*
 ̇

*
D u*

− p* 1]n=th
* on h

*

   (5)

where Rer is the rheological version for the Reynolds number given by

Re r=
 ̇1 Lc Lc

̇ 1
=

̇1 Lc Lc

2 K ̇ 1
n−1

=


2 K ̇1
n−2 L−2

   (6)

For SMD fluid flows, the Reynolds number usually employed in the literature is related to the rheological Reynolds 
number as Re=2RerU*(2-n).

Remark: The  rheological  Reynolds  number  defined  by  Eq.  (6)  is  a  dimensionless  group  based  only  on  the 
rheological fluid properties, and, therefore, entirely uncoupled of the flow kinematics as it uses to be. Souza Mendes 
(2007) suggests this definition claiming that Rer may be viewed as a dimensionless fluid density.
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3. THE FINITE ELEMENT APPROXIMATION

Based on usual definitions of finite element sub-spaces for pressure (Ph) and velocity (Vh) (see, for instance Franca 
and Frey (1992)), a GLS formulation for SMD fluid flows may be written as: find the pair  ph , uh ;qh , v h ∈ Ph×V g

h

such that

∫


[∇ uh
]uh

⋅vh d 2 ̇ ∫


Duh
⋅D vh

d −∫


phdiv vh d ∫


div uh qh d 

∫


div uh
 ReK div v h d ∫


p hq hd 

 ∑
K∈

h

∫
 K

[∇ uh]uh∇ ph−2 ̇ div D uh⋅  Re K [∇ vh]uh∇ q h−2 ̇ div Dvhd 

=∫


f⋅vh d ∫
h

th⋅v hd 

 ∑
K∈

h

∫
 K

f⋅  ReK  [∇ vh]uh∇ q h−2 ̇ div D v hd  , ∀ qh , v h ∈ Ph×Vg
h

(7)

where Rer K
denotes  the  grid  rheological  Reynolds  number, Re rK

 and  are  the  stability  parameters  for  the 
motion and continuity equations, respectively – see Franca and Frey (1992) for their definitions.

4. NUMERICAL RESULTS

The GLS approximation for  SMD fluids  (Eq.(7))  is  employed to simulate the  flow over  an abrupt  expansion 
followed by an  abrupt  contraction.  Fig.  1  shows the  geometry  and  a  blown-up view of the  employed mesh.  The 
geometry is very similar to the ones used by Naccache and Barbosa (2007) and de Souza Mendes et al. (2007). After a 
mesh independence test procedure, based on an acceptable error of 2% of the stress modulus value on the tube wall, the  
computational domain  h is partitioned by 10,500 equal-order Lagrangian bi-linear (Q1) finite elements, rendering a 
total of 32,523 degrees-of-freedom. The smallest dimensionless mesh size, hK

*
min=hK/H, is equal to 0.099. The geometry 

lengths are: R2=6.3 m, R1=1.0 m, L2=6.3 m and L1=18.85 m.
The boundary conditions employed are impermeability and non-slip on the main tube and on the expansion-contraction 
walls, fully-developed profiles for velocity at the inflow and outflow of the tube and symmetry on the tube centerline 
(u2=0).

(a)

(b)

Figure 1. Flow over an abrupt expansion-contraction: (a) problem statement; (b) a mesh detail.

Figure 2 show the unyielded regions for inertia flows with Rer=25, J=18000, n=0.4 and the dimensionless flow rate 
ranging from 0.25 to 1.50.. It can be observed that the unyielded regions upstream and downstream the expansion-
contraction are symmetric for low values of U* – performing a rigid body motion – plug flow – along the upstream and 
downstream tubes. The zone on the top of the cavity,  where the fluid is almost quiescent,  also presents a symmetric 
pattern. When the dimensionless flow rate is increased, the symmetry is broken: the unyielded region on the upstream 
tube is slightly reduced on Fig. 2b, while the unyielded regions on the upstream tube completely vanishes on Fig. 2c and 
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Fig 2d. Once the inertia effects are present, the upwind behavior of the velocity entails higher strain rates after the  
contraction,  implying also on higher  stress  levels  on the  region,  exceeding  the yield-stress.  The symmetry  of  the  
unyielded zone on the top of the expansion-contraction is also broken – as can be noticed comparing Figs. 2a and 2d – 
as well as its shape is reduced. The island on the geometry centerline also is reduced and is slightly carried downstream.

(a) (b)

(c) (d)

Figure 2. Morphology of the yielded regions for Rer=25, J=18000, n=0.4: (a) U*=0.25; (b) U*=0.50; (c) U*=1.00; 
(d) U*=1.50.

Figure 3 show the unyielded regions for inertia flows with Rer=25, J=18000, U*=1.0 and power-law index ranging 
from 0.4 to 1.0. One may observe that the unyielded regions upstream and downstream the expansion-contraction are 
reduced in thickness – with a small elongation on the longitudinal direction – with the increasing of the power-law 
index. In the other hand, the unyielded region inside the expansion-contraction, as well as the island on the geometry 
center at the tube centerline, are increased with the increase of the power-law index. This difference on the behavior  
exists once the main tube presents predominantly ̇1, while the other regions presents ̇1 . With the aid of 
Fig. 4 – the SMD flow curves for  n=0.2 and 0.8 – it is more clear to understand such kind of behavior, once is a 
computational issue. Increasing the power-law index, strain rates smaller then 1.0 reduces the stress value – in some  
regions – to values smaller then the yield-stress, and so, increases the unyielded zones.

(a) (b)
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(c) (d)

Figure 3. Morphology of the yielded regions for Rer=25, J=18000, U*=1.00: (a) n=0.4; (b) n=0.6; (c) n=0.8; (d) n=1.0.

Figure 4 – SMD flow curves for n=0.2 and 0.8.

The increase of the rheological Reynolds number produces an effect  similar to that produced by increasing the  
dimensionless flow rate, that is to say, the larger the Reynolds, the greater the asymmetry of the unyielded zones. Once 
again it is worth mentioning that the asymmetry presented by Fig. 5 is produced by the upwind effect of the inertia term 
of the equation of motion. Increasing the amount of momentum, the unyielded region inside the expansion-contraction 
is distorted and increases in thickness. This phenomena is due to the decrease of the viscous forces acting on the flow 
against the increase of the inertia forces. In the same way, the island on the geometry center at the centerline is shifted 
to  the right,  with a  slightly reduction on its  size.  It  is  important  to  emphasize  that  the rheological  dimensionless 
quantities  defined  by  Eq.  (4)-(6)  have  fundamental  importance  on  the  investigation  of  the  effects  of  inertia  and 
viscoplasticity on the flow. Thanks to this new methodology, the amount of inertia on the flow can be increased without  
changing  the  yield-stress  level  of  the  fluid,  or  more  specifically,  in  Fig.  5 is  possible  to  increase  the  rheological 
Reynolds number, with the same dimensionless flow rate.

(a) (b)
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(c) (d)
Figure 5. Morphology of the yielded regions for U*=1.0, J=18000, n=0.4: (a) Rer=0.5; (b) Rer=5.0; (c) Rer=10.0; (d) 

Rer=25.0.

5. FINAL REMARKS

In this article, a mixed GLS approximation for the  SMD constitutive model is introduced and discussed. Some 
numerical computations for inertia flows through an axisymmetric expansion-contraction are presented. The influence 
of inertia, the power-law index and the yield stress level – ranged by the dimensionless flow rate, U* – on the unyielded 
zones of the fluid were presented and analyzed, with the aid a new definition of dimensionless rheological quantities.  
These are obtained following the definitions proposed in de Souza Mendes (2007), which allows a better analysis of the 
effects of inertia and viscoplasticity on the flow, since it makes possible to change the rheological Reynolds number for  
a fixed yield-stress level.
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