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Abstract. The main goal of this article is to perform stabilized finite element approximations for inertialess flows of  
an alternative elasto-viscoplastic model, based on the thixotropic model proposed by de Souza Mendes (2009). This  
model is approximated by a multi-field Galerkin least squares method in extra-stress, pressure and velocity. This  
methodology does not need to satisfy the compatibility conditions arisen from finite element sub-spaces for extra-
stress–velocity and pressure–velocity. By adding to the classical Galerkin formulation mesh-dependent terms, which  
are functions of the residuals of the flow governing equations, the stability is obtained without upsetting the classical  
method consistency.  Numerical  simulations of the flow over  a planar expansion-contraction are carried out.  To  
evaluate the influence of yield stress limit (using for this the flow intensity U*), microstructure shear modulus, power  
law index and jump number, U* is varied from 7.5x10-3 to 1.5, θ0

* from 1.0 to 666.67; n was taken from 0.2 to 0.65 
and J from 5x102 to 5x104, respectively

Keywords: elasto-viscoplasticity; structured fluid, regularized viscoplastic models; multi-field Galerkin least-squares  
method.

1. INTRODUCTION 

Many fluids encountered in industrial processes and applications exhibit non-Newtonian behavior. Some of them are 
called viscoplastic liquids, once they present a solid-like behavior when the stress level at which they are subject is less 
then the material yield-stress – common examples are cosmetics, foods, personal care products, paints, cements, drilling 
muds, crude oil and polymer melts. Thus, the yield stress is known as the most important characteristic of viscoplastic  
fluids. However, some experimental data demonstrate that elasticity is observed on the apparently unyielded regions 
formed on viscoplastic fluid flows (Sikorski  et al.,  2009; de Souza Mendes  et al.,  2007).  In this regions,  the fluid 
microstructure is on a stable configuration and,  once the stress level at the fluid exceeds the yield stress value, this  
structure collapses causing a dramatic drop in viscosity and elasticity.

On this work, stabilized finite element approximations are employed to investigate the performance of an alternative  
model for elasto-viscoplasticity,  based on a modification of the viscosity function proposed by de Souza Mendes and 
Dutra (2004) and on the Oldroyd-B equation for viscoelastic materials. The relaxation time is defined as the relation 
between the purely viscous response of the material – given by the modified viscosity function – and the microstructure  
shear modulus, G, function of the steady-state structure parameter which measures the structuring level of the material – 
see de Souza Mendes (2009) for more details. To approximate this elasto-viscoplastic model, a multi-field Galerkin 
least squares method in terms of extra-stress, pressure and velocity is employed. This methodology – introduced firstly 
for the Stokes problem by Hughes et al. (1986) – does not need to satisfy the compatibility conditions arisen from the 
finite element sub-spaces for extra-stress–velocity and pressure–velocity fields once it  enhances the stability of the 
classical Galerkin method adding mesh-dependent terms.

The numerical simulations of the flow over a planar abrupt expansion-contraction are carried out in order to evaluate 
the influence of the flow intensity, jump number,  microstructure shear modulus and power law index on the yield 
surfaces  of  elasto-viscoplastic  materials.  The  dimensionless  flow-rate  U* is  varied  from  7.5x10-3 to  1.5,  the  non-
dimensional relaxation time for the fully structured material,  θ0

*, from 1.0 to 666.67; the power law index was taken 
from 0.2 to 0.65 and the jump number  J from 5x102 to 5x104. For all computations, a combination of equal-order 
bilinear finite element interpolations are used to approximate the primal variables of the problem, thence violating the 
involved compatibility conditions. The results obtained in this work are qualitatively in accordance with the related  
viscoplastic and elasto-viscoplastic literature and proved to be physical meaningful.

2. MECHANICAL MODELING
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The relevant equations for a multi-field boundary value problem accounting for isothermal and incompressible fluid  
flows  may  be  formed  by  coupling  the  mass  conservation  and  the  momentum balance  equations  with  the  upper-
convected  Maxwell  viscoelastic  equation.  Subjecting  the  system  to  he  appropriate  velocity  ans  stress  boundary 
conditions, it becomes

ρ(∇u)u=−∇ p+div τ+f in Ω

τ+θ( γ̇) τ̌=2ηss( γ̇ )D (u) in Ω

div u=0 in Ω

u=u g on Γg
u

τ=τg on Γg
τ

[τ− p 1]n=th on Γh

   (1)

where  is the fluid density,  u is the velocity vector,  the extra-stress tensor,  D is  the strain rate tensor,  p the 
hydrostatic pressure, f is the body force vector, ηss and θ are, respectively, the viscosity and the relaxation time of 

the fluid – functions of the second invariant of D; th is the stress vector, ug and  g are the imposed velocity and extra-
stress boundary conditions, respectively, and τ stands for the upper-convected time derivative of τ , given by

τ̌=(∇ τ )u−(∇ u) τ−τ (∇ uT
)    (2)

In this work, the elasto-viscoplastic constitutive equation employed is based on a modification of the viscosity  
function proposed by de Souza Mendes and Dutra (2004) and on the Oldroyd-B equation for viscoelastic materials – 
Eq. (1b). The steady-state viscosity function is given by

ηss (γ̇ )=(1−exp (−η0 γ̇
τ0 ))(

τ0−τ0d

γ̇
exp(−

γ̇
γ̇0 )+

τ 0d

γ̇
+K γ̇

n−1)+η∞    (3)

where η0 is the viscosity of the completely structured material, η∞ is the viscosity of the completely unstructured 
material, τ0 is  the  static  yield  stress, τ0d is  the  dynamic  yield  stress, γ̇0d is  the  shear  rate  that  marks  the 
transition in the stress from τ0 to τ0d ,  K is the consistency index and  n the power-law index – see,  for more 
details, de Souza Mendes (2009).

The relaxation time θ is defined as the relation between the purely viscous response of the material – given by the 
viscosity function on Eq. (3) – and the microstructure shear modulus G,

θ(γ̇ )=
η( γ̇)

G (λss( γ̇))
   (4)

The expression employed to evaluate the microstructure shear modulus takes into account the steady-state structure  
parameter λss ,  which  measures  the  structuring  level  of  the  material  and  is  also  a  function  of  the  strain  rate.

G (λ ss( γ̇)) should be small when the fluid is fully structured (λss=1)  and, on the limit where the structure is 

completely destroyed (λss=0) , should be infinite to suppress the elastic therm on Eq. (1b) – describing a purely  
viscous behavior. Thus, the employed expression for the microstructure shear modulus is

G=
G0

λss
m    (5)

where G0 is the shear modulus of the completely structured material, m is a positive dimensionless constant and

λ ss( γ̇)=( ln ηss( γ̇)−lnη∞
ln η0−lnη∞ )    (6)

3. FINITE ELEMENT APPROXIMATION

Based on the usual definitions for the finite element subspaces for extra stress (h), velocity (Vh) and pressure (Ph) 
fields (Behr  et al, 1993), a multi-field Galerkin least-squares formulation for elasto-viscoplastic fluid flows may be 
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written as:  given the functions of body force  f and Dirichlet  and Neumann boundary conditions   g and  ug,  and  th 

respectively, find the triple ( h,ph,uh) ∈  h×Ph ×Vg
h  such that 

B(τh , ph ,uh ;Sh , qh , v h)=F (Sh , qh ,v h) ∀(Sh , qh , v h) ∈ Σh×Ph×V g
h    (7)

with

B( τh , ph ,uh ;Sh , q h , vh
)=∫

Ω
ρ([∇ uh

]uh
)⋅vh dΩ+∫

Ω
τ

h
⋅D (v h

)dΩ−∫
Ω

ph div v hdΩ

+
1

2ηss
∫
Ω
τ

h
⋅ShdΩ+

1
2ηss

∫
Ω
θ([∇ τ

h
]uh

−[∇ uh
] τ

h
−τ

h
[∇ uh

]
T
)⋅Sh dΩ−∫

Ω
D (uh

)⋅Shd Ω

+∫Ω
div uh qh dΩ+ϵ∫Ω

p hq hdΩ+δ∫Ω
div vh div uh dΩ

+∑
K∈Ωh

∫
ΩK

(ρ [∇ uh]uh+∇ ph−div τh)⋅α(Re r K
)(ρ[∇ v h]uh+∇ qh−div Sh)dΩ

+2ηssβ∫Ω ( 1
2ηss

τ
h
+

1
2 ηss

θ ([ ∇ τ
h
]uh

−[∇ uh
]τ

h
−[ τ

h
](∇ uh

)
T )−D (uh

))⋅
⋅( 1

2ηss

Sh+
1

2ηss

θ ([∇ Sh]uh−[∇ uh]Sh−[Sh](∇uh)T )−D(vh))d Ω

   (8)

and

F (Sh , q h , vh
)=∫

Ω
f⋅v hdΩ+∫

Γh

th⋅v
hd Γ+∑

K ∈Ω
h

∫
ΩK

f⋅(α(ReK )(ρ[∇ vh
]uh

+∇ q h
−div Sh

))dΩ  (9)

The grid Reynolds number ReK and the stability parameters α(ReK) and δ are defined as

α(Re K)=
hK

2∣uh∣p

ξ(ReK )

ξ(ReK )={ReK , 0<ReK<1
1, ReK>1 }

ReK=
ρhK∣u

h∣p mk

4ηss

mk=min {1 /3,2C k}

 (10)

where  mk is a positive scalar that takes in to account the the  k-degree of the polynomial interpolations; the stability 
parameter β , which stabilizes the the material equation, is defined as an arbitrary positive value – for more details,  see 
Franca and Frey (1992) and Behr et al. (1993).

4. NUMERICAL RESULTS

In this section, the numerical results obtained employing the GLS formulation defined by Eq. (7)-(10) for elasto-
viscoplastic  fluids  flowing  through  a  planar  expansion-contraction  are  presented.  The  dimensionless  parameters 
employed to characterize the flows – for more details, see Souza Mendes (2007) – are, firstly, the dimensionless flow 
rate U*,

U *=
u0

γ̇1 h
 (11)

where u0 is the flow rate at the channel inlet, h is the characteristic length, taken as half of the entrance channel height, 
and γ̇1 is defined as the strain rate where the fluid begins to flow as a power-law one. The viscosity jump when the 
stress is around the yield stress value is measured by the jump number J, and is written as

J=
η0 γ̇1
τ 0

−1  (13)

To quantify the elastic effects at the flow, its employed the non-dimensional relaxation time for the fully structured  
material, which relates the viscosity jump measured by the jump number with the microstructure shear modulus,
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θ0
*=

τ0

G 0

(J+1)  (14)

To account the inertia effects, the dimensionless density ρ* can be employed – although only inertialess results are 
show in this work – and is defined as

ρ*=
ρ(γ̇1 h)2

τ0d

 (12)

Figure  1  shows  a  sketch  of  the  studied  geometry,  a  planar  channel  with  a  sudden  expansion  followed  by  a 
contraction. The boundary conditions employed in the numerical simulations are uniform parallel velocity u0 at channel 
inlet  and  outlet,  no-slip  and  impermeability  on  channel  walls  and  symmetry  conditions on  the channel  centerline 
(∂2u1=u2=12=0). The expansion-contraction aspect ratios on height (H/h) and width (L/h) are set as 6.3. In order to 
guarantee  fully-developed  flow  regions  upstream  and  downstream  channels,  the  mesh  lengths  either  upstream  or 
downstream of the expansion-contraction set equal to 20h. After a mesh independence procedure that compares the 
transversal dimensionless stress profile at the expansion-contraction center for each consecutive mesh refinement, the 
selected  mesh,  with  5,200 bilinear  Lagrangian  (Q1)  finite  elements,  presents  an  overall  error  less  then  1% when  
compared to the next more refined mesh. It's important mentioning that in all the simulations performed in this work, 
ρ*=0.0, η∞ γ̇1/τ 0d=10−2 , γ̇0d/ γ̇1=10−4 , τ0/ τ0d=2 and m=0.1.

Figure 1. Flow over an expansion-contraction – the problem statement.

The influence of the  shear modulus of the completely structured material  (G0) on the unyielded surfaces of the 
material and on the viscosity and relaxation time isobands is shown, respectively, on Fig 2 and 3, for, J=5000, n=0.5 
and  U*=0.1. For high values  of  the shear  modulus,  the unyielded regions are  almost  symmetric  –  the same trend 
observed on the viscosity and relaxation time isobands. With the decrease of the shear modulus, the fields became 
asymmetric due to the increase of the elastic effects on the flow – see, for some qualitative experimental comparison, de 
Souza Mendes et al, 2007.

(a) (b)

(c) (d)
Figure 2. Yielded and unyielded regions, for J=5000, n=0.5 and U*=0.1: (a) θ0

*=666.67; (b) θ0
*=200;

(c) θ0
*=40; (d) θ0

*=1.0.
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(a) (b)

(c) (d)
Figure 3. Viscosity and relaxation time isobands, for J=5000, n=0.5 and U*=0.1: (a) θ0

*=666.67; (b) θ0
*=200;

(c) θ0
*=40; (d) θ0

*=1.0.

Figure 4 shows the effects of the increasing of the flow intensity  U* on the unyielded regions of the flow,  for 
J=5000, n=0.5 and θ0

*=666.67. Even for the lowest presented value of  U*, the unyielded regions are affected by the 
elasticity of the material – no symmetry is observed. Increasing the flow intensity, the unyielded regions at the channels  
are strongly reduced while, inside the cavity, the unyielded regions becomes more asymmetric.

(a) (b)

(c) (d)
Figure 4. Yielded and unyielded regions, for J=5000, n=0.5 and θ0

*=666.67: (a) U*=7.5x10-3; (b) U*=0.1;
(c) U*=0.4; (d) U*=1.5.

On Fig. 5 is shown the regularization parameter influence on the morphology of the flow unyielded regions. From 
Eq. (3), it can be observed that the viscosity equation is regularized by the therm (1−exp(−η0 γ̇ /τ0)) , making the 
expression tends to the viscosity of the completely structured material (η0) when the strain rate tends to very low values. 
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Thus, to assess the influence of the regularization, the dimensionless quantity J was ranged from 5x102 to 5x104. The 
trend presented on the figures is in accordance with Liu et al. (2002), where the unyielded regions decrease in size with 
increasing the regularization parameter and at the contour a zig-zag pattern is observed – this behavior due to the round-
off errors associated with the high values of the regularization parameter.

(a) (b)

(c) (d)
Figure 5. Yielded and unyielded regions, for U*=1.0, n=0.5 and θ0

*=666.67: (a) J=500; (b) J=5000; (c) J=2.5x104;
(d) J=5x104.

On the Fig. 8 it can be observed the influence of the power-law index on the flow unyielded regions,  for J=5000, 
U*=1.0 and θ0

*=666.67. As  n is increased, the trend observed is to symmetrize the unyielded zones at the top of the  
expansion-contraction. As pointed out in de Souza Mendes et al. (2007), the shear-thinning liquids are displaced more 
easily  than  Bingham-like  viscoplastic  liquids  (higher  n indexes),  because  shear  thinning  tends  to  cause  larger 
deformation rates. This behavior, generates also higher stresses, which amplify the elastic effects and turns the flow 
more asymmetric. 

(a) (b)

(c) (d)
Figure 6. Viscosity and relaxation time isobands, for J=5000, U*=1.0 and θ0

*=666.67: (a) n=0.20; (b) n=0.3; (c) n=0.5; 
(d) n=0.65.
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5. FINAL REMARKS

In this article, some numerical simulations of inertialess flows of elasto-viscoplastic fluids have been undertook. The 
elasto-viscoplastic  model  was  based  on  the  thixotropic  model  introduced  by  de  Souza  Mendes  (2009)  and  the 
mechanical  model  was  approximated  via  a  multi-field  Galerkin  least-squares  method in  extra-stress,  pressure  and 
velocity. Due to the good stability features  of the GLS method, all computations have employed a combination of 
equal-order bilinear Lagrangian finite elements and high elastic flows have been stably achieved. The numerical results  
have evidenced the strong influence of the  microstructure shear modulus on the size and position of the  unyielded 
material regions. Also the yield stress level – variated via the flow intensity U* – proved to play a relevant role on the 
characterization of the unyielded zones.
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