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Abstract. Many materials with industrial applications exhibit a thixotropic behavior. Thixotropic fluid has as main  
feature the breaking of the structure by applying a shear and a restructuring with the removal of this stress. This  
process is reversible and occurs isothermally. This article aims to study the behavior of these materials, using a model  
recently proposed by de Souza Mendes, 2009. The equations used in this model is solved by a stabilized finite element  
method (GLS method). A sensitivity analysis is presented to a creeping flow around a cylinder in a confined planar  
channel, where the parameters relevant to the model is scanned in order to study their influences.
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1. INTRODUCTION

Modeling the behavior of materials has always been of interest to researchers and scientists. The interest is even  
greater when these materials are present in industrial activities. Materials that exhibit a thixotropic behavior are among 
the materials of great interest to researchers and industries. Examples of such materials can be mentioned: emulsions,  
paints, nano-composites, gels, drilling fluids, foods and minerals.

Even with the aforementioned reasons, there is still a great shortage of models that describe this type of material.  
Some researchers have presented alternative models that describe such materials. Are among the most recent Mujumdar  
et al., 2002, which developed a model to describe the rheological behavior of thixotropic fluids with yield stress and 
elasticity, based on the kinetic process responsible for structure changes in the fluid. A structure parameter that indicates 
the level of structure of the material was defined. Petera and Kotynia, 2004, proposed a modified Maxwell model to  
predict  the  viscoelastic  and  thixotropic  behavior  of  semi-solid  alloys,  and  tested  the  model  using  an  available 
experiment in the literature, with good results. Recently de Souza Mendes, 2009, presented an interesting model for 
thixotropic fluids. The constitutive equation is based on the upper-convected Maxwell constitutive equation, modified 
to  include  structuring  level  dependence  in  both the  elastic  modulus  and the  viscosity.  The structure  parameter  is  
governed by an evolution equation that is purely hyperbolic in steady flows.

The aim of the present article is to analyze the performance in complex flow of the constitutive equation for elasto-
viscoplastic thixotropic fluids recently proposed by de Souza Mendes . A numerical investigation is performed for the  
permanent  flow of a  fluid structured  around a cylinder  between two parallel  plates.  The relationship between the 
channel height and diameter of the cylinder is held fixed. Inertia is neglected and elastic effects are assessed by a 
relevant set of governing parameters. All numerical results proved to be physically meaningful and according to the  
related literature, indicating that constitutive equation is capable of giving a good prediction of the mechanical behavior  
of the thixotropic fluid.

2. MATERIAL BEHAVIOR

The model used herein describes a thixotropic fluid with elasticity. To compound the thixotropic and elastic effects,  
a constitutive equation proposed (de Souza Mendes, 2009) is developed starting from an equation to describe an elastic 
fluid,  Maxwell-B  model,  with modifications.  Here,  viscosity  and elastic  modulus are  functions  of  a  parameter  to 
represent the level of structure of the material. An evolutionary equation is developed to describe this parameter, which 
is taken into account effects of time and which is a function of shear stress applied, property which determines the  
breakdown of the structure.
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2.1 Constitutive equation

The constitutive equation used to describe the behavior of a thixotropic material have which base the Maxwell-B  
equation for  the viscoelastic  fluids modified,  where  a  structural  viscosity  and elastic  modulus are  dependent  on a 
parameter for the material structure. This parameter is described by an evolutive equation presents in the following  
section. Thus, we have:

τ+ θ(λ)τ
∇

=2ηv (λ )D (u) (1)

where   is extra-stress tensor, D is the strain rate tensor. The structural viscosity, v, and modulus of elasticity, Gs are 
described respectively by:

ηv (λ )=(
η0
η∞ )

λ

η∞ and G s(λ )=
G 0

λ
m (2)

where ηo is the viscosity of the fluid in its state of highest structuring level (λ = 1); and η∞ is the viscosity of the fluid in 
its state of lowest structuring level (λ = 0). 

The relaxation time of the fluid, , therefore, is also a implicit function of  and given by:

θ(λ)=
ηv (λ)

G s(λ)
(3)

In a brief analysis, it is noted that for higher structure levels, high values of relaxation times are also obtained and in 
consequence, elasticity effects are shown. For an unstructured material, the behavior shown is similar to a generalized  
Newtonian fluid.

2.2 Evolutive equation for the structure parameter

According to the expression proposed by de Souza Mendes (2009), it is assumed that the equation for the evolutive  
parameter structure, , follows the following structure:

u⋅∇λ=1
t eq [(1−λ)a−(1−λeq)

a( λλeq )
b

( τ

ηv(λ) γ̇ )
c

] (4)

where a and b are positive scalar coefficients,  is the stress modulus applied on the fluid and u the velocity vector. In 
the evolution equation, the left side represents the rate of change of structure in time. On the right side, the first term  
represents the accumulation or growth of the structure,  and the second term determines the break of structure. The 
parameter  teq  is called equilibrium time. It has the function of the time scale for the process of accumulation of the 
microstructure. It is important to note that the function associated with the break term is dependent of the stress module  
applied to the fluid, where the stress level that produces the breakdown of the material structure. When a particle fluid is 
subjected to a constant stress for a time long enough, the structure of the material tends to reach an equilibrium level on  
this stress. This structure in a state of equilibrium is given by the following expression:

λeq ( γ̇)=
ln ηeq( γ̇)−ln η∞

ln η0−ln η∞
(5)

where  is the viscosity of the material unstructured and 0 is the viscosity of the completely structured material. The 
viscosity in a equilibrium state,  eq, is given by the equation proposed in Mendes de Souza (2004) for viscoplastic 
fluids.

By definition, the structure parameter of the material ranges between 0 and 1. For structure parameter equal to 0  
have a material with a structure completely broken. As for a material with the structure parameter equal to 1, we can say 
that he is fully structured.

3. NUMERICAL MODELING

Numerical solutions were obtained via stabilized finite element approximations of the mass and momentum balance 
equations, constitutive equation for the material behavior and a new evolutive equation for the structure parameter.  
Here, GLS (Galerkin Least-squares) method is applied in terms of the structure parameter, extra- stress, pressure and 
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velocity.  Thus,  we  can  establish  the  following  problem  of  boundary  condition:  Find  the  quadruple 
such that ∀(φ , S , q ,v ) ∈ Λ×Σ×P×V

B(λh , τ h , ph , uh ,φ h;Sh , qh ,vh
)=(2ηp)

−1∫
Ω
τ

h
⋅Sh dΩ−∫

Ω
D(uh

)⋅Sh dΩ+∫
Ω
τ⋅D (v h

)dΩ

+ (2ηp)
−1∫Ω θ(λ )(∇ τ

h
)uh
⋅Shd Ω−(2 ηp)

−1∫Ω θ(λ )∇uh
τ
h
⋅Sh dΩ−(2ηp)

−1∫Ω θ(λ)τ
h
∇(uh

)
T
⋅Sh dΩ

+∫Ω uh
⋅∇ λ

h
φ

h dΩ+∫Ω teq
−1[∑

i=1

n

(ai )λ i
hi]φh dΩ+∫Ω t eq

−1[( λλss )
b

( τ

ηv (λ) γ̇ )
c

]φh dΩ

−∫
Ω

t eq
−1[∑i=1

n

(ai )λ ss
i ( λ

h

λss )
b

( τ

ηv(λ) γ̇ )
c

]φ hdΩ−∫
Ω

p div vh dΩ−∫
Ω

div uh qh dΩ

+∫
Ω
δ(x)div uhdiv vh dΩ+ ∑

K ∈Ωh

∫
ΩK

(∇ ph−div τ)⋅α( x)(−∇ q h+ div Sh)dΩ+ ϵ∫
Ω

ph qh dΩ

+ 2ηp∫Ω ((2ηp)
−1 τ h+ (2 ηp)

−1θ(λ )((∇ τh)uh−∇uh τh−τh∇(uh)T )+ D(u)h)  x

 xβ(DeK )((2ηp)
−1Sh

+ (2 ηp)
−1
λ((∇ Sh

)uh
−∇ uhSh

−Sh
∇(uh

)
T
)−D(v )h)dΩ

+∫
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i=1

n

(ai )λi
hi

+ ( λ
h

λ ss
)

b

( τ
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c
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(ai )λ ss
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h

λss
)

b

( τ

ηv (λ) γ̇ )
c

] x
x ψ( x)[uh⋅∇λh+∑

i=1

n

(ai )φ i
hi

+ ( φ
h

λ ss
)
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( τ
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c
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c
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       (6)

where the stability parameters α and δ are the ones proposed in Franca and Frey for constant viscosity fluids; ψ is the 
parameter introduced in Franca et al. in the context of the advection-diffusion equation; and the parameter β is set to 1, 
according to GLS error estimates established in Behr et al. Moreover, the non-linear system of equations obtained from 
the discretization of GLS formulation is solved by a quasi- Newton method. This algorithm makes use of a frozen  
Jacobian gradient strategy, updating the Jacobian matrix at each two or three iterations only.

4. DIMENSIONLESS PARAMETERS

This paper presents a non-dimensionalization proposed by de Souza Mendes (2007 and 2009), where the kinematic 
effects of the flow are decoupled from the rheological effects of the material.

Thus, the set of dimensionless variables below are considered

t*=t γ̇1 ; x*
=

x
R

; u*
=

u
γ̇1R

; γ̇*
=
γ̇
γ̇1

; p*
=

p
τod

; τ*
=
τ
τod

; ηv
*
( γ̇

*
)=

ηv ( γ̇)

ηv ( γ̇1)
=
ηv ( γ̇)

k γ̇1
n−1 (7)

where the τ0d is the dynamic yield stress .
From the group of dimensionless variables, we can write the dimensionless equations that govern the thixotropic 

fluid flow and its boundary conditions, giving rise to the following dimensionless groups that govern the flow:

θ*=θ(λ)γ̇1⇒θ0
*=θ(1) γ̇1=

τ0

G0

(J+ 1) ; U *=
uc

γ̇1 R
; J ≡

γ̇1−γ̇0

γ̇0

=
γ̇1

γ̇0
−1 ; t eq

* =t eq γ̇1 (8)

In Eq. (8), the first equation is obtained from the dimensionless constitutive equation, where the elastic terms gives  
rise to a dimensionless relaxation time, that can also be considered as a version of rheological Deborah number. From 
the Dirichlet boundary condition for the dimensionless velocity arises the intensity flow U*, which is the dimensionless 
parameter that takes into account the flow kinematic. From the dimensionless steady-state viscosity function, the jump 
number  J appears. This number provides a relative measure for the plateau formed when the shear rate jumps from
γ̇0d
≡τ0d

/η0 to γ̇1≡(τ0 d
/K)1/n .  Finally,  the  evolution  equation  contributes  to  the  analysis  allowing defining  a 

dimensionless time change of the material structure, t*
eq, which does not take into account the kinematics of the flow, 

but only the rheological effects of the material.
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5. NUMERICAL RESULTS

In this section we present results obtained by numerical simulations using a four-field GLS method of a creeping 
flow around a cylinder confined between two flat plates. In the simulations, the aspect ratio provided by the channel  
height  compared  with the cylinder  radius  is  equal  to eight.  The boundary  conditions,  described  in  Fig.1(a)  are as 
follows: (i) no-slip and impermeability along the channel wall and on the cylinder surface (u=0); (ii) symmetry along 
the channel centerline (τ12 =∂x1u1=u2=0); (iii) uniform velocity and extra-stress profiles at the channel inlet (τ= 0, u1=U, 
u2= 0); (iv) free-traction at the channel outlet ([−p1 + 2ηv D]n=0).  Also, for the structure parameter,  the following 
boundary conditions are imposed - (v) uniform profile along the channel inlet (λ=1); (vi) vanishing axial gradients along 
the other boundaries. 

(a) (b)

Figure 1 - Problem domain: (a) the geometry; (b) the mesh 

The problem domain was  discretized  by three  meshes  with different  refinements,  using bi-linear  quadrilateral 
elements. After a mesh independence study, using the drag coefficient as parameter, we choose a mesh with 5.830 Q1-
elements. The mesh is more refined in the entrance, in the channel walls, and in surface of the cylinder, since these  
regions are subjected to severe boundary layers (Fig1(b)).

Figure 2 shows the structure parameter field, for U∗=1, n=0.5, J=200, θ0
*=4 and teq

∗=0.3-10. The equilibrium time 
teq

∗, controls the intensity of the transport mechanism for the material structure level, since it multiplies the advective  
term of the evolution equation by the structure parameter. For low values of teq

∗, the field of the structure parameter is 
approximately symmetrical. By increasing this parameter, the advection effect increases in both in the input channel as 
the surface of the cylinder.

(a)

(b)

(c)

Figura 2 - Structure parameter field, for U∗=1, n=0.5, J=200 and θ0
*=4: (a) teq

∗=0.3; (b) teq
∗=1; (c) teq

∗=10.

In Fig.3 the unyielded regions are presented, for the same above described cases. The unyielded region is defined as  
the region where the material is considered structured. Therefore, we define the yield surface as the locus of points in  
which  λ ss=λ ss( γ̇0)≈0.9 . Thus, unyielded regions show the same pattern of the structure parameter field, being 
almost symmetric for low teq

∗, and asymmetric due to the upwind effect experienced by its evolution equation.

(a)
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(b)

(c)

Figura 3 - Unyielded regions, for U∗=1, n=0.5, J=200 and θ0
*=4: (a) teq

∗=0.3; (b) teq
∗=1; (c) teq

∗=10.

6. CONCLUSION

All the results confirmed the adequacy of the employed thixotropic model as an attractive alternative for modeling 
viscoplastic  flows  of  materials  presenting  some degree  of  elasticity.  Numerical  modeling  using  a  four-field  GLS 
stabilizing  procedure  proved  to  be  robust  and  efficient,  even  for  an  extremely  complex  mechanical  model  with 
nonlinear equations.
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