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Abstract. In this work, a study of the rising movement of single gas bubble in vicoplastic fluid is performed, using the 
Ansley and Smith equations. The solution is obtained numerically and the numerical results are compared with 
experimental results from the literature. The calculations are performed for spherical bubbles, low Reynolds number 
(<1), constant temperature, and neglecting wall effects. The effects of bubble mass and surface tension are analyzed. 
In addition, a bi-dimensional numerical study is performed, also for a single bubble motion. The numerical solution of 
the governing conservation equations of mass and momentum is obtained with the FLUENT software, using the finite 
volume technique and the volume of fluid (VOF) method. The results obtained with the simplified model are in a fair 
agreement with the literature. Moreover, comparisons will be evaluated between the numerical 2-D model and the 
simplified one. 
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1. INTRODUCTION 

 
The study of gas bubble behavior in viscoplastic fluids is of great interest to the industry. In the oil industry, gas 

bubbles may invade the well during the cementing and cannonade processes.  Knowledge of the behavior of gas bubble 
dynamics inside the cement paste allows a better planning and control of these processes. Therefore, a simplified model 
providing reliable and fast results, can be very useful to optimize the processes. 

 
2. SIMPLIFIED MATHEMATICAL MODEL 

 
The kinematics of the bubble inside a fluid, driven by buoyancy, is obtained with a force balance at the bubble (Fig. 

1), following the procedure described in Pinto et al. (2011):  

 

€ 

F = −Fe + Fa = m ∂2h
∂t 2

= ma∑                                          (1) 

Where eF [N] is the buoyancy force, aF [N] is the drag force, a [m/s2] is the bubble acceleration, m [kg] is the 
bubble mass, and t is time. 

 
Fig 1. Force balance at the bubble 

 
To calculate the buoyancy force eF  [N], it was used the Archimedes equation, where pρ  [kg/m3] is the bubble 

density: 

€ 

Fe =
1
6
(ρ f − ρp )gπd

3              (2) 

The bubble diameter is obtained as a function of its displacement, considering that it is a spherical ideal gas bubble 
in a liquid fluid with constant temperature. Therefore,  

€ 

P V = nmmRT              (3) 
Where V [m3] is the gas volume, P [Pa] is the gas pressure, nnm is the gas molar weight [kg/mol], R [J K/mol] is the 

universal gas constant and T [k] is the gas temperature. By assuming constant temperature,  

€ 

P1V1 = P2V2              (4) 
The pressure is related to the bubble displacement by:  
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€ 

Px = Po + ρ f gh + Δpτs                         (5) 
where  P0 [Pa] is the atmospheric pressure, Px [Pa] is the hydrostatic pressure,  

€ 

Δpτs = 4τs / d  [Pa] is the 
pressure caused by the surface tension, 

€ 

τs  , of the fluid in the gas-liquid interface of the bubble, h [m] is the depth, g  
[m/s2] is the gravity and 

€ 

ρ f
 [kg/m3] is the fluid density. 

Finally, the bubble diameter d [m] is obtained by:  

€ 

d3 +
4τs

Po + ρ f gh
d2 −

(Podo + ρ f ghodo + 4τs)
Po + ρ f gh

do
2 = 0         (6) 

 where h0 [m] is the initial depth of the bubble, and d0 [m] is the initial diameter. 
The viscoplastic fluid behavior is modeled by the Generalized Newtonian Fluid constitutive equation, and the 

viscosity function is given by  the Herschel-Bulkley model 

€ 

η =
τ o
˙ γ 

+ k ˙ γ n−1 if τ ≥τ o

∞ if τ < τ o

( 
) 
* 

+ * 
            (7) 

In the equation above, 

€ 

τo [Pa] is the yield stress, n is the Power-Law index, k [Pa.sn] is the consistency index, 

€ 

η is 
the viscosity and 

€ 

˙ γ  [s-1] is the shear rate fluid 
To calculate the drag force Fa [N] we use the model postulated by Ansley and Smith (1967) for Newtonian, Power-

Law, Bingham and Herschel-Bulkley fluids where Reg is the Generalized Reynolds number, Big is the Bingham 
number, v [m/s] is the bubble velocity, and x is the correction factor for Power-Law fluids.  

€ 

CD =
24x
Reg

(1+ kBig ) for 9.6 *10−5 ≤Reg ≤ 0.36 ;0.25 ≤ Big ≤ 280 ;0.43 ≤ n ≤ 0.84
     (8) 

€ 

Reg =
v 2−ndnρp

k
 

€ 

Big =
τo

k(v / d)n
          (9) 

To calculate Fa [N] we use the Beaulne M. and Mitsoulis E. (1997) methodology. Therefore, 

€ 

CD =
Fa

8ρpv
2πd2

  

€ 

Fa = 3xπd2−n (mcv
n + kdnτO )       (10) 

From the equations (2), (6), and (10) we calculate the bubble acceleration by: 

€ 

∂2h
∂t 2

=
g(ρl − ρp )

ρp

−
18x
ρpd

k ∂h∂t( )
n

dn
+ kτ o
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+ 
+ 
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                                   (11) 

 
3. SIMPLIFIED NUMERICAL SOLUTION 

 
The equation for the bubble acceleration is soved numerically using the second and thrid order Runge-Kutta 

method. We define the maximum acceptable time step in 0.1[sec/iteration] to provide stable results and calculate 
the effect of the mass of the bubble in the acceleration equation. The results show that for small displacements (<1 
m) the bubble mass can be neglected. However, for larger displacements (> 50m), the results are affected 
considerably. Therefore, we take into account the mass of the bubble in the calculations. 

Numerical calculations confirm that the effect of surface tension is considerable when the bubble is being 
formed, whereas it is not important when the bubble moves. 

Figure 2 shows the comparison between the experiments of Raymond F. and J. Rosant (1999) for a gas bubble 
flowing in a Newtonian fluid and our numerical results. Table 1 shows the rheological properties of the fluid. 

       Table 1. Rheological properties for Newtonian fluid  
                                                                                                    (at 22°C). 
      
 
 
 

 
 

 
 
 
 
 

 
 

Name Viscosity 
[Pa.s] 

Density  
[kg/m3] 

Surface tension 
[N/m] 

S1 0.7 1250 0.063 
S2 0.46 1245 0.063 
S3 0.24 1230 0.063 
S4 0.16 1222 0.063 
S5 0.075 1205 0.063 

Te
rm

in
al

 V
el

oc
ity

 [m
/s

g]
 

Diameter spherical bubble 

Fig 2. Terminal velocity VS Diameter spherical bubble in Newtonian fluid 
comparison with experiments (Raymond F. and J. Rosant, 1999) 
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Figure 3 shows the comparison between the experiments conducted by Tabuteau et al. (2006) and our numerical 
results. These results are obtained for a Herschel–Bulkley fluid and rigid spheres, with different densities, b1=1866 
kg/m3, b2=1801 kg/m3, b3=1736 kg/m3, b4=1932 kg/m3 , and a constant sphere diameter, equal to 39.6 mm. Table 2 
shows the rheological properties of the fluid. 

 
Table 2. Rheological properties for viscoplastic fluid (at 22°C). 
 
 
 
 

 
      

 
 
 
 
 

 
Fig 3: Depth vs. Time in a viscoplastic fluid: 
comparison with experiments (Tabuteau et al., 2006) 

 
It is observed that the results compare well for gas bubbles and rigid spheres in Newtonian and viscoplastic fluids, 

for lower Reynolds numbers. However, for higher Reynolds it is necessary to use different mathematical models, as 
expected. 

 
4. BI-DIMENSIONAL NUMERICAL SOLUTIONS 
 

The numerical solution of a single bubble motion in Newtonian and viscoplastic incompressible fluids is also 
analyzed using an axisymmetric bi-dimensional geometry. The governing conservation equations of mass and 
momentum are discretized via the finite volume method described by Patankar (1980), using the SIMPLE algorithm to 
couple velocity and pressure. The numerical results are obtained using the commercial software FLUENT (ANSYS). 
The volume of fluid method (VOF) (Fluent User's Guide, 2010) is used to take into account the multiphase flow. The 
VOF method solves a set of mass conservation equations and obtains the volume fraction of each phase αi through the 
domain, which should sum up unity inside each control volume. Therefore, if αi = 0, the cell is empty of phase i; if αi = 
1, the cell is full of phase I and if 0< αi <1, the cell contains the interface between the fluids.  

In this study, there are only two phases, so that any variable is given by: 
( ) 1222 1 ϕαϕαϕ −+=  (16) 

The interface between phases is obtained by the solution of continuity equation for αi for the 2 phases: 
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The momentum conservation equation is presented below: 
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Figure 4 shows a sketched computational domain. A mesh test was performed, and the selected mesh was a non-
uniform one with 120000 elements. 

 
Fig 4. Schematic computational domain. 

The objective of this numerical analyzes is to evaluate the assumptions and correlations used in the simplified solution 
modeling. A quantitative comparison between the different approaches will be performed, to indicate the validity range 
of the simplified model. 
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