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Abstract. A stabilized finite element method for the solution of viscous flow and heat transfer is presented. An equation 

for pressure is derived from a second-order time accurate Taylor-Galerkin procedure that combines the mass and the 

momentum conservation laws. At each time-step, once the pressure has been determined, the velocity field and the 

temperature field are computed solving discretized equations obtained from another second-order time accurate 

scheme and a least-squares minimization of momentum and energy residual. Thus, the procedure leads to a stabilized 

finite element method suitable for the simulation of heat transfer problems in free convection. The terms that stabilize 

the finite element method arise naturally from the process, rather than being introduced a priori in the variational 

formulation. Local time-steps, chosen according to the time-scales of convection-difusion of momentum and energy, 

play the role of stabilization parameters. Numerical solutions of some representative examples demonstrate the 

application of the proposed stabilized formulation, where good agreement with previously published experimental and 

computational results have been obtained. 

 

Keywords: Finite element method, computational fluid dynamic, stabilized finite element method, free convection, 

second-order time accurate methods 

 

1. INTRODUCTION  
 

 In this work a finite element method for quasi-incompressible viscous flows and heat transfer is presented. In a 

recent work (Gonçalves Jr. and De Sampaio, 2010) the authors presented a stabilized finite element formulation for the 

solution of incompressible flows, where the time discretization precedes the spatial discretization. In this paper we 

extend those ideas to derive a stabilized finite element method suitable for dealing with free convection flows. Here a 

finite element method for quasi-incompressible viscous flows and heat transfer is presented. However, here the time 

discretizations employed are improved to second order accuracy. In the present method an equation for pressure is 

derived from a second-order time accurate Taylor-Galerkin procedure that combines the mass and the momentum 

conservation laws. 

At each time-step, once the pressure has been determined, the velocity and temperature fields are computed solving 

discretized equations obtained from another second-order time accurate scheme and a least-squares minimization of 

spatial momentum and energy residuals. In order to introduce the correct amount of stabilization everywhere on the 

domain of analysis, the time-step must be defined locally, leading to spatially varying time-step distributions. The 

procedure proposed in De Sampaio (2006) is followed. In this case the use of local time-steps and the required 

synchronization scheme are embedded in the method. The result is a method that resembles well known stabilized 

formulations that employ a single time-step for the whole domain and a local definition of stabilization parameters, but 

whose origins are based on the use of local time-steps combined with a synchronization scheme. 

The terms that stabilize the finite element method, controlling wiggles and circumventing the Babuška-Brezzi 

condition (Brezzi and Fortin, 1991), arise naturally from the process, rather than being introduced a priori in the 

variational formulation. Generating the desired stabilization effect, without compromising the consistency of the 

approximation. For stabilization formulations details see De Sampaio (1991, 1993, 2005, 2006).  

 The method demonstrated good agreement with previously published experimental (Churchill and Chu, 1975 and 

Hyman et al., 1953) and numerical results (De Vahl Davis, 1983 and Barakos et al., 1994). 

 

2. PHYSICAL MODEL 

 
 We consider a continuum model for quasi-incompressible viscous flows including buoyancy forces and heat 

transfer. The problem is defined on the open bounded domain Ω, with boundaryΓ , contained in nsd-dimensional 

Euclidean space. The flow is governed by the quasi-incompressible Navier-Stokes equations and an energy convection- 



Proceedings of ENCIT 2012           14
th
 Brazilian Congress of Thermal Sciences and Engineering 

Copyright © 2012 by ABCM                   November 18-22, 2012, Rio de Janeiro, RJ, Brazil 

 

diffusion equation. These are written using the summation convention for a=1,2,...,nsd e b=1,2,...,nsd, in Cartesian 

coordinates: 
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 The dependent variables are the velocity, pressure and temperature fields represented by au , p  and T , respectively. 

The sound speed is denoted by sc . The fluid specific heat is represented by c . Note that the viscous stress is given 

by ( )abbaab xuxuµτ ∂∂+∂∂= , where µ  is the fluid viscosity. The heat flux is given by bb xTκq ∂∂−= , where κ  is 

the fluid thermal conductivity. The fluid density (at the reference temperature 0T ) is denoted by ρ . The volumetric 

expansion coefficient of the fluid is Tρρβ ∂∂−= −1  

 Velocity and traction boundary conditions are prescribed by given data on non-overlapping boundary partitions uaΓ  

and taΓ , such that ΓΓΓ =taua U , according to: 

 

 ),,( tuu aa x=         uaΓ∈x ,                                                                                                                                          (4) 

 

 ( ) ),,( ttnτδp ababab x=+−         taΓ∈x ,                                                                                                                      (5) 

 

where abδ  is the Kronecker delta and bn  denotes Cartesian components of the outward normal vector at the boundary. 

 Temperature and heat flux boundary conditions are prescribed by given data on non-overlapping boundary partitions 

TΓ  and qΓ , such that ΓΓΓ =qT U , according to: 

 

 ),,( tTT x=         TΓ∈x ,                                                                                                                                              (6) 

 

 ),,( tqnq bb x=         qΓ∈x ,                                                                                                                                          (7) 

 

 Pressure and normal velocity conditions are prescribed by given data on non-overlapping boundary partitions pΓ  

and GΓ , such that ΓΓΓ =Gp U , according to: 

 

),,( tpp x=         pΓ∈x ,                                                                                                                                              (8) 

 

 ),,( tGnu bb x=         GΓ∈x .                                                                                                                                         (9) 

 

2.1. Governing Equations In Non-Dimensional Form 

 

 Here the variables are non-dimensionalized with respect to reference scales conveniently chosen from the problem 

data. The non-dimensional velocity, pressure and temperature are represented by 0aa uu'u = , 2
0uρp'p =  

and ( ) ( )
minmax0 TTTT'T --= , respectively. Note that 0u  is the velocity reference scale and maxT  and minT  are the 

maximum and minimum temperatures in the problem. The spatial co-ordinates are non-dimensionalized with respect to 

the reference length L , i.e., Lxx aa =' . The non-dimensional time is represented by Lutt 0'= . The gravity field is 

non-dimensionalized with respect to its modulus gaa gg =' . 
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 In terms of the non-dimensional variables the governing equations become: 
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 where scuM 0= is the Mach number, µLρRe u=  is the Reynolds number, ( ) 2
0minmax uLTTβRi g−=  is the 

Richardson number, κµcPr =  is the  Prandtl number. 

 For free convection, we have to obtain the velocity time scale indirectly, defining it as ( ) LTTβu gminmax0 −= . 

Thus, the Reynolds and Richardson numbers that appear in the non-dimensional equations become 1=Ri  

and PrRaRe = , respectively, where ( ) µκLTTβcρRa 3
minmax

2 −= g  is the Rayleigh number. The non-dimensional 

boundary conditions remain the same forms presented previously. 

 

3. STABLE FINITE ELEMENT FORMULATION 

 

3.1. Pressure Equation 

 

 To obtain an equation for pressure update, we use a Taylor series for pressure in time. The spatial discretization is 

performed with Lagrangian linear triangular elements in 2D. For the problem variables, we have: 
n
ajj

n
a uNu =ˆ , 

n
jj

n
TNT =ˆ , 

n
jj

n
pNp =ˆ , and jj

n
pNp ∆ˆ∆ = . The pressure change during the time step t∆  is represented by 

nn ppp −= +1
∆ , where the superscript n  e 1+n  indicates the time level. Note that jN  represents the shape functions 

of the finite element and the variables with the subscript j  are nodal values.  

Employing the classical Galerkin method, using Green's identity and introducing the boundary conditions we obtain: 
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Mathematical details are explored in Gonçalves Jr. and De Sampaio (2010). Substituting jj pNp ∆ˆ∆ =  in Eq. (13), 

obtain a symmetric equation system for calculating the nodal values of the pressure update: 

 

 [ ]{ } { }
ipjijpp F∆pA =                                                                                                                                           (14) 

 

3.2. Velocity and Temperature Equations 

 
 Once the pressure field has been determined, we use a second order accurate time discretization for the momentum 

and energy balance to obtain equations for the velocity and temperature update. 

 Discretizations with respect to time are given by: 
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 The velocity change during the time step Mt∆  is represented by n
a

n
aa uuu −= +1

∆ . The temperature change during 

the time step  Et∆  is nn
TTT −= +1

∆ . The pressure field at time level 21+n  is written as 2∆
21 ppp nn +=+ .  

 Consider the following spatial discretization of the problem variables: 
n
ajj

n
a uNu =ˆ , ajja uNu ∆ˆ∆ = , 

n
jj

n
TNT =ˆ  and 

jj T∆NT̂∆ = . Using the discretized field of variables we can write, after minimizing the squared discretization 

residuals of Equation. (15) and (16) and combining traction and heat flux boundary conditions (Curi et al., 2011), the 

following expressions: 
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 Note that the weight functions present in the first terms of these Eqs. (17) and (18) have the same structure as the 

SUPG weight function method of Brooks and Hughes (1982). The remaining weight functions, affecting the second and 

third term in Eq. (17) and affecting the second term in Eq. (18), are specific of the method presented here. 

 Using Green's identity, in Eqs. (17) and (18) we obtain a symmetric equation system to solve for the nodal values of 

velocity and temperature update. For 2D problems, we have the following system: 
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It is important to note that the time-discretization is performed before the spatial discretization, which is performed 

using standard finite elements 0C . The terms multiplied by Mt∆ and Et∆  in Eqs. (17) and (18)  are responsible for 

controlling the spatial oscillations (wiggles) in convection-dominated flows, and stabilize the computation, regardless of 

the restrictions Babuška-Brezzi on the choice of interpolation spaces for velocity and temperature. In particular, the use 

of the equal order of interpolation for all variables adopted here become possible through a proper choice of Mt∆ and 

Et∆ . It is important to remark that rather than being proposed a priori, the stabilization terms appear naturally in this 

method from least squares minimization of the time-discretized momentum and energy square residuals with respect to 

the temperature and velocity degrees of freedom (with free nodal values).  

 

3.3 Local Time-Steps and Synchronization 

 
 In this paper we propose an alternative way to choose the time step. Instead of using the method proposed by De 

Sampaio (1991, 1993, 2005) we chose the time step according to the minimum values of the characteristic time scales 

of convection and diffusion , i.e., ( )dMcM ttt ,min∆ =  and ( )dEcE ttt ,min∆ = , where µhρtd eM 6
2

=  and 

κhρtd eE 6
2

= , are the momentum and energy diffusion time-scales respectively, and n
ehtc u=  is the convection 

time scale. Here eh  is the mesh with local size (De Sampaio, 1991).  

Because we have optimal time-steps that vary with position and according to the quantity transported (momentum or 

energy), we have to resort to a special scheme to synchronize the time advance of the computation. In this paper, we 

adopt the procedure introduced in De Sampaio (2006). It is based on selecting a synchronization time-step *
∆t , which 

will be the same for all flow variables and for all domain (in fact, the usual concept for a time-step). 

 The synchronization time-step is chosen to be quite close to the minimum problem time-step and is calculated as 

( )EM ttt ∆,∆min999.0∆
* = . The time-step *

∆t  is the time step used for synchronizing the advancement of the 

numerical simulation.  Let aû∆ , p̂∆  and T̂∆  be the variable changes obtained when using the appropriate local time-

steps to solve Eqs. (14) and (19). On the other hand, let us denote the variable changes from time nt  to the time 
*

∆tt n +  (the synchronization time) as *ˆ∆ au , *ˆ∆p  e *ˆ∆T . Thus, keeping the same rate of change, we have the following 

relations: 

      (17) 
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 In practice, the computation based on local time-steps and the synchronization phase does not have to be performed 

separately. The the synchronization phase, represented by Eqs. (20), (21) and (22), can be embedded in Equations (14) 

and (19). Thus, the synchronized solution at *
∆tt n +  can be obtained directly solving the following symmetric 

equations: 

 

 [ ]{ } { }
ipj

*
ijpp

* F∆pA =                                                                                                                                         (23) 

 

 
















=


































iT

iv

iu

j
*

j
*

j
*

ijTT
*

ij

T
vT

*
ij

T
uT

*

ijvT
*

ijvv
*

ij

T
uv

*

ijuT
*

ijuv
*

ijuu
*

F

F

F

∆T

∆v

∆u

AAA

AAA

AAA

                                                                                                     (24) 

 

 The solution procedure is semi-segregated., in the sense that pressure is computed first and independently at each 

step but the solution of the velocity components and temperature are coupled, as shown in Equation (24). After each 

step the problem variables are updated and the computation proceeds until the specified final analysis time is reached. 

All equation systems in the present formulation involve symmetric positive-definite matrices. The equation system is 

solved using the conjugate gradient method with Jacobi pre-conditioner, in an Element-by-Element (EBE) 

implementation. The computer code used here was developed for the study of 2D problems, where linear triangles were 

used to interpolate all dependent variables. The code also uses dynamic adaptive finite element meshes generated using 

Bowyer’s algorithm (Bowyer, 1981), guided by the error estimation of Zienkiewicz and Zhu (1987). Was also 

employed parallel programming optimized for high performance on distributed parallel computing systems. 

  

4. NUMERICAL EXAMPLES 

 
4.1. Free Convection around a Hot Cylinder 

  
 This example shows the external free convection flow that develops around a hot horizontal cylinder. The fluid in 

contact with the cylinder is initially at rest at temperature 0min TT = . The temperature at the cylinder surface is 

T∆TT 0max += . Non-slip velocity boundary conditions are applied at the cylinder surface. The cylinder diameter d is 

chosen as the reference scale for length. The numerical results are parameterized with respect to the Prandtl and 

Rayleigh numbers. 

The transients ran from 0t =  to 0ud70t = , where ( ) dgTTβu minmax0 -= . We have performed simulations at 

71.0=Pr  and 
876555544

10 and ,10,105x10 ,2x10 ,1.5x10 ,10 ,5x10 ,10=Ra , using minimum element size from 

d001.0d02.0  until . At the end of all numerical simulations we obtained in the more refined meshes involved up to 

300000 elements. Figure 1 presents the temperature iso-lines and final adaptive mesh at 0ud70t =  for 45x10=Ra  

and 71.0=Pr  with minimum element size as d02.0hmin = . 

We also compared the mean Nusselt number, on the cylinder surface with experimental correlations available in 

literature. According to Churchill and Chu (1975) and Hyman et al. (1953), experimental data in the laminar range of 

the mean Nusselt number on the cylinder surface is well correlated by the following correlations respectively: 
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 Figure 2 presents a comparison of our predictions for the mean Nusselt number, given by 

minmaxw TTκdqNu -= , where wq  is the mean heat flux from the cylinder, using all Rayleigh numbers with the 

experimental data provided from Eqs. (25) and (26). Note that we have obtained a fairly good agreement with the 

experimental correlations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 
4.2. Free Convection in a Square Cavity 

 
 We consider a square cavity centered on x=0 and y=0 with length L  (reference spatial scale), thermally insulated at 

the top and bottom walls. A reference pressure 0=p  is imposed at the center of the cavity. Non-slip velocity boundary 

conditions are imposed on all walls. The cavity contains a fluid that is initially at rest at temperature 0T . The left wall 

temperature is 2T∆TT 0 +=  and the right is at temperature 2∆0 TTT −= . These boundary conditions at opposite 

Figure1: Temperature field and final adaptive mesh at 0ud70t =  for 410x5=Ra  and 71.0=Pr   

(25) 

(26) 

Figure 2: Comparison between the present results with those of Churchill and Chu ande Hyman et al.. 
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parallel walls generate a free convection flow inside the cavity and. Once again, the numerical results are parameterized 

with respect to the Prandtl and Rayleigh numbers.   

 The transients ran from 0t =  to 0uL60t = , where ( ) LgTTβu minmax0 -= , with minimum element size of 

L005.0 .. In all cases this has been long enough to obtain convergence to steady-state. Figure 4 and Fig. 5 presents the 

final adaptive mesh, temperature field, pressure field and velocity field for 510=Ra  and 610=Ra  respectively.  We 

could note that for sufficiently high Rayleigh numbers, thermal stratification occurs.  

 Table 1 compares our results for the mean, maximum and minimum Nusselt numbers with Barakos et al. (1994) and 

the benchmark provided by De Vahl Davis, (1983). The use of adaptive meshes in our computations allowed obtaining 

results that agree within less than 2.2% with the benchmark data using much finer meshes. We could note that the local 

Nusselt number increases with the Rayleigh number, as expected by the theory. 

 

 

 

 

 

 

                        

  

 

 

 

  

Figure 3: Adaptive mesh, temperature field, pressure field and velocity field for 510=Ra and 71.0=Pr  

 

 

 

 

                                     

 

 

 

 

 

 

                

           Figure 4: Adaptive mesh, temperature field, pressure field and velocity field for 610=Ra  and 71.0=Pr  

  

 

 

 

 

5. CONCLUDING REMARKS 

 
 A second-order time accurate finite element formulation has been presented. The mass and momentum balances 

have been combined in a Taylor series for pressure. This is discretized in space with the Galerkin method and results in 

an equation suitable for computing the pressure update. Momentum balance and energy balance time-discretization are 

carried out with finite differences. A least square minimization of spatial residuals is performed to obtain equations for  

  
410=Ra  

 
510=Ra  

 

 
610=Ra  

 

 
Nu max. Nu min. Nu mean Nu max. Nu min. Nu mean Nu max. Nu min. Nu mean 

De Vahl 

Davis, (1983) 
3.528 0.586 2.243 7.717 0.729 4.519 17.923 0.989 8.799 

Barakos et al. 

(1994) 3.539 0.583 2.245 7.636 0.773 4.510 17.442 1.001 8.806 

Present 

method 3.529 0.584 2.244 7.723 0.721 4.519 17.528 0.971 8.807 

Table 1: Mean and maximum Nusselt numbers: comparison between the present results with those of  De Vahl Davis, (1983). 
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the velocity and temperature update. The proposed method introduces automatically the stabilization terms required to 

control wiggles in convection dominated problems and for circumventing Babuška-Brezzi restrictions on the choice of 

interpolating spaces for velocity and pressure. The approach leads to a partially coupled system, where pressure degrees 

of freedom are solved first and then the velocity and temperature degrees of freedom are computed simultaneously. The 

update of velocity components and temperature are obtained solving the coupled equation system shown in Equation 

(24). Numerical examples have been presented, covering free convection flow and heat transfer. Comparison of our 

results with the benchmark numerical solutions and with experimental heat transfer data shows the good performance of 

the stabilized formulation proposed here. 
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