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Abstract. A stabilized finite element method for the solution of viscous flow and heat transfer is presented. An equation
for pressure is derived from a second-order time accurate Taylor-Galerkin procedure that combines the mass and the
momentum conservation laws. At each time-step, once the pressure has been determined, the velocity field and the
temperature field are computed solving discretized equations obtained from another second-order time accurate
scheme and a least-squares minimization of momentum and energy residual. Thus, the procedure leads to a stabilized
finite element method suitable for the simulation of heat transfer problems in free convection. The terms that stabilize
the finite element method arise naturally from the process, rather than being introduced a priori in the variational
formulation. Local time-steps, chosen according to the time-scales of convection-difusion of momentum and energy,
play the role of stabilization parameters. Numerical solutions of some representative examples demonstrate the
application of the proposed stabilized formulation, where good agreement with previously published experimental and
computational results have been obtained.
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1. INTRODUCTION

In this work a finite element method for quasi-incompressible viscous flows and heat transfer is presented. In a
recent work (Gongalves Jr. and De Sampaio, 2010) the authors presented a stabilized finite element formulation for the
solution of incompressible flows, where the time discretization precedes the spatial discretization. In this paper we
extend those ideas to derive a stabilized finite element method suitable for dealing with free convection flows. Here a
finite element method for quasi-incompressible viscous flows and heat transfer is presented. However, here the time
discretizations employed are improved to second order accuracy. In the present method an equation for pressure is
derived from a second-order time accurate Taylor-Galerkin procedure that combines the mass and the momentum
conservation laws.

At each time-step, once the pressure has been determined, the velocity and temperature fields are computed solving
discretized equations obtained from another second-order time accurate scheme and a least-squares minimization of
spatial momentum and energy residuals. In order to introduce the correct amount of stabilization everywhere on the
domain of analysis, the time-step must be defined locally, leading to spatially varying time-step distributions. The
procedure proposed in De Sampaio (2006) is followed. In this case the use of local time-steps and the required
synchronization scheme are embedded in the method. The result is a method that resembles well known stabilized
formulations that employ a single time-step for the whole domain and a local definition of stabilization parameters, but
whose origins are based on the use of local time-steps combined with a synchronization scheme.

The terms that stabilize the finite element method, controlling wiggles and circumventing the Babuska-Brezzi
condition (Brezzi and Fortin, 1991), arise naturally from the process, rather than being introduced a priori in the
variational formulation. Generating the desired stabilization effect, without compromising the consistency of the
approximation. For stabilization formulations details see De Sampaio (1991, 1993, 2005, 2006).

The method demonstrated good agreement with previously published experimental (Churchill and Chu, 1975 and
Hyman et al., 1953) and numerical results (De Vahl Davis, 1983 and Barakos et al., 1994).

2. PHYSICAL MODEL

We consider a continuum model for quasi-incompressible viscous flows including buoyancy forces and heat

transfer. The problem is defined on the open bounded domain Q, with boundary I, contained in nsd-dimensional
Euclidean space. The flow is governed by the quasi-incompressible Navier-Stokes equations and an energy convection-
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diffusion equation. These are written using the summation convention for a=1,2,....,nsd e b=1,2,...,nsd, in Cartesian
coordinates:

ou ou dot,, dp
oy — |-+t ppe, (T -T,)=0 1
p{ o ax,,} o phg. T -T,) (1)
1 dp ou
i la 2
pcsz ot axa )
ar  or| ag,
= — |+2b 3
p{az”” ax,,}rax,, )

The dependent variables are the velocity, pressure and temperature fields represented by u,, p andT , respectively.
The sound speed is denoted by c, . The fluid specific heat is represented by c. Note that the viscous stress is given
by 7., = u(u, /0x, +0u, /0x,), where u is the fluid viscosity. The heat flux is given by g, =—x 9T /dx, , where x is

the fluid thermal conductivity. The fluid density (at the reference temperature7;)) is denoted by p . The volumetric

expansion coefficient of the fluid is =—p~' dp/oT
Velocity and traction boundary conditions are prescribed by given data on non-overlapping boundary partitions T,

andT,, , such thatT,, UT,, =T, according to:
uy =, (%0, xel,, @
(~ POy + 10y =1,(x0),  XET,, ©)

where d,, is the Kronecker delta and n, denotes Cartesian components of the outward normal vector at the boundary.

Temperature and heat flux boundary conditions are prescribed by given data on non-overlapping boundary partitions
I’y and Fq , such that I'; U Fq =TI, according to:

T =T(x,1), xe I}, (6)

qym, = q(x,1), xel,, (N

Pressure and normal velocity conditions are prescribed by given data on non-overlapping boundary partitions I',

and ', such that T, UT'; =T, according to:
p=px1,  xel,, ®)

uyn, =G(x,1),  xely. )

2.1. Governing Equations In Non-Dimensional Form

Here the variables are non-dimensionalized with respect to reference scales conveniently chosen from the problem
data. The non-dimensional velocity, pressure and temperature are represented by u',=u,/u,, p'= p/ pué

and7'= (T—TO )/ (Tmax -Tmin), respectively. Note that u, is the velocity reference scale and 7T,, and T, are the

maximum and minimum temperatures in the problem. The spatial co-ordinates are non-dimensionalized with respect to
the reference length L, i.e., x',=x,/L. The non-dimensional time is represented by #'=ru,/L . The gravity field is

non-dimensionalized with respect to its modulus g', = g, / ||g||
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In terms of the non-dimensional variables the governing equations become:

ou', e, ou', 1 a (adu, N ou',, N ap +Rig'. T'=0 (10)
o' ox', Redx',\ox', oJx',) ox,
dp' du'
M?Z5+—2=0 1
or'  ox', 0
8_T+u,b oT 1 0 (dT" —0 (12)
or' ox',, " RePr ox' » Lox',

where M =u/c, is the Mach number, Re = p"u"L/ 4 1is the Reynolds number, Ri= /)’(Tmax =T in mg"L/ ué is the
Richardson number, Pr=cu/x is the Prandtl number.
For free convection, we have to obtain the velocity time scale indirectly, defining it as u, = /ST, —Tonin ]|g||L

Thus, the Reynolds and Richardson numbers that appear in the non-dimensional equations become Ri=1
and Re = \|Ra/ Pr , respectively, where Ra = p c"g"ﬁ max — Lmin )L3 / ux s the Rayleigh number. The non-dimensional

boundary conditions remain the same forms presented previously.
3. STABLE FINITE ELEMENT FORMULATION
3.1. Pressure Equation

To obtain an equation for pressure update, we use a Taylor series for pressure in time. The spatial discretization is

performed with Lagrangian linear triangular elements in 2D. For the problem variables, we have: i, =N ,ua],

T"=N /T/n’ p"=N;p}, and Ap" =N;Ap;. The pressure change during the time step Az is represented by
Ap = p™ — p", where the superscript n e n+1 indicates the time level. Note that N ; represents the shape functions

of the finite element and the variables with the subscript j are nodal values.
Employing the classical Galerkin method, using Green's identity and introducing the boundary conditions we obtain:

5 ai Aron,[ ., aan  ap" —
[N, 2aq + jAt ON; 98 yr -, Fha gy _ A P j—( ' G )d\‘ (13)
5 At 2 dx, ox, o Ox, a2 ax axb axa

Mathematical details are explored in Gongalves Jr. and De Sampaio (2010). Substituting Ap = N jAp; in Eq. (13),

obtain a symmetric equation system for calculating the nodal values of the pressure update:
[A oy, MAp; 1= 1F,, | (14)

3.2. Velocity and Temperature Equations

Once the pressure field has been determined, we use a second order accurate time discretization for the momentum
and energy balance to obtain equations for the velocity and temperature update.
Discretizations with respect to time are given by:

—4 4 Rig T" +O(At2)
5)

AT A p 0T, 9T L 9 [OAT_ | w 0T, 94; \, (s2) (16)
Atp 2 ox,, dx, ) 2RePr dx,\ ox, dx, dx,
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The velocity change during the time step At,, is represented by Au, =u)"' —u! . The temperature change during

the time step Ar, is AT =T"*' —T" . The pressure field at time level n+1/2 is written as p™*"? = p" +Ap/2.

Consider the following spatial discretization of the problem variables: i, = N; a] , Aii, =N ; Aug, T"=N ]T,” and

AT =N ;A4T; . Using the discretized field of variables we can write, after minimizing the squared discretization

residuals of Equation. (15) and (16) and combining traction and heat flux boundary conditions (Curi et al., 2011), the
following expressions:

J‘{N +A% 3N }Rdﬁ jAtM au“NR o + j T NEdQ+jN[ (= pS., +7. ), Z(x,t)r+1/2dl"=0

Q Xb Xe T,
V free Au,, a7
., ON,
J‘{N +A;E i }EdgnjAM Rg,N.R, dQ+j1v lax.n—qyn, | 2ar =0 Y free AT,  (18)
X
Q b

{4

Note that the weight functions present in the first terms of these Eqs. (17) and (18) have the same structure as the
SUPG weight function method of Brooks and Hughes (1982). The remaining weight functions, affecting the second and
third term in Eq. (17) and affecting the second term in Eq. (18), are specific of the method presented here.

Using Green's identity, in Eqgs. (17) and (18) we obtain a symmetric equation system to solve for the nodal values of
velocity and temperature update. For 2D problems, we have the following system:

Auuu Auvij AuTij Auj Fui

T
Auv|J Avvij AvTij AVj = Fvi (19)
AuTlJ Ar\l:Tij ATTij ATj Fr;

It is important to note that the time-discretization is performed before the spatial discretization, which is performed
using standard finite elements C,. The terms multiplied by Atr,, and At, in Eqs. (17) and (18) are responsible for

controlling the spatial oscillations (wiggles) in convection-dominated flows, and stabilize the computation, regardless of
the restrictions BabuSka-Brezzi on the choice of interpolation spaces for velocity and temperature. In particular, the use
of the equal order of interpolation for all variables adopted here become possible through a proper choice of At,, and

Aty . It is important to remark that rather than being proposed a priori, the stabilization terms appear naturally in this

method from least squares minimization of the time-discretized momentum and energy square residuals with respect to
the temperature and velocity degrees of freedom (with free nodal values).

3.3 Local Time-Steps and Synchronization

In this paper we propose an alternative way to choose the time step. Instead of using the method proposed by De
Sampaio (1991, 1993, 2005) we chose the time step according to the minimum values of the characteristic time scales

of convection and diffusion , i.e., AtM=min(tC,th) and AtE=min(tC,tdE), where th=ph62/6,u and

tdp = phe2 / 6x , are the momentum and energy diffusion time-scales respectively, and fc =h, is the convection

time scale. Here £, is the mesh with local size (De Sampaio, 1991).

Because we have optimal time-steps that vary with position and according to the quantity transported (momentum or
energy), we have to resort to a special scheme to synchronize the time advance of the computation. In this paper, we

adopt the procedure introduced in De Sampaio (2006). It is based on selecting a synchronization time-step At", which
will be the same for all flow variables and for all domain (in fact, the usual concept for a time-step).
The synchronization time-step is chosen to be quite close to the minimum problem time-step and is calculated as

At =0.999min(AtM,AtE). The time-step Af" is the time step used for synchronizing the advancement of the

numerical simulation. Let Az, Ap and AT be the variable changes obtained when using the appropriate local time-

steps to solve Egs. (14) and (19). On the other hand, let us denote the variable changes from time ¢" to the time

"+ At (the synchronization time) as Aﬁ:, AP e AT" . Thus, keeping the same rate of change, we have the following
relations:
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where AL =it + A -, (), Ai, =i, (1" + Aty -, (x,1"), A = Bl +Ar)- plx.e”),

Ap = plxt” + Aty )- ples), AT =Tl + A )-Flx.1"), and AT = Flxs” + At )~ Flx,r7).
In practice, the computation based on local time-steps and the synchronization phase does not have to be performed
separately. The the synchronization phase, represented by Egs. (20), (21) and (22), can be embedded in Equations (14)

and (19). Thus, the synchronized solution at t" +At" can be obtained directly solving the following symmetric
equations:

A o ]{AP*J' }= {Fpi} (23)

R #* B %
A wij A wi At ||Au j Fy;

A uvij A vvij A*vTij AV*j = Fvi (24)
A utij A v A*TTij AT j Fr;

The solution procedure is semi-segregated., in the sense that pressure is computed first and independently at each
step but the solution of the velocity components and temperature are coupled, as shown in Equation (24). After each
step the problem variables are updated and the computation proceeds until the specified final analysis time is reached.
All equation systems in the present formulation involve symmetric positive-definite matrices. The equation system is
solved using the conjugate gradient method with Jacobi pre-conditioner, in an Element-by-Element (EBE)
implementation. The computer code used here was developed for the study of 2D problems, where linear triangles were
used to interpolate all dependent variables. The code also uses dynamic adaptive finite element meshes generated using
Bowyer’s algorithm (Bowyer, 1981), guided by the error estimation of Zienkiewicz and Zhu (1987). Was also
employed parallel programming optimized for high performance on distributed parallel computing systems.

4. NUMERICAL EXAMPLES
4.1. Free Convection around a Hot Cylinder

This example shows the external free convection flow that develops around a hot horizontal cylinder. The fluid in
contact with the cylinder is initially at rest at temperature 7,,, =7,. The temperature at the cylinder surface is
T,. =T, + 4T . Non-slip velocity boundary conditions are applied at the cylinder surface. The cylinder diameter d is

chosen as the reference scale for length. The numerical results are parameterized with respect to the Prandtl and
Rayleigh numbers.

—Tmm1 g”d . We have performed simulations at

Pr=0.71 and Ra=10%5x10%10°,1.5x10°,2x10°,5x10°,10°,10” and10® , using minimum element size from
0.02d until 0.001d . At the end of all numerical simulations we obtained in the more refined meshes involved up to

The transients ran froms =0 to t=70d/u, , where u, = \/ ﬁ(T

max

300000 elements. Figure 1 presents the temperature iso-lines and final adaptive mesh at ¢ =70d/u, for Ra = 5x10*
and Pr=0.71 with minimum element size as h,,;, = 0.02d .

We also compared the mean Nusselt number, on the cylinder surface with experimental correlations available in
literature. According to Churchill and Chu (1975) and Hyman et al. (1953), experimental data in the laminar range of
the mean Nusselt number on the cylinder surface is well correlated by the following correlations respectively:
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(Nu)=0.36 + (25)
[1+ (0.559/Pr)16 ]%
% (26)
P
(Nu)=0.53 | ———— |Ra
Pr+0.952

Figure 2 presents a comparison of our predictions for the mean Nusselt number, given by
(Nu) = <qw>d / K<Tmax - Tmin> , where <qw> is the mean heat flux from the cylinder, using all Rayleigh numbers with the

experimental data provided from Egs. (25) and (26). Note that we have obtained a fairly good agreement with the
experimental correlations.

Figurel: Temperature field and final adaptive mesh at ¢ = 70d/u,, for Ra = 5xI 0% and Pr=0.71
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Figure 2: Comparison between the present results with those of Churchill and Chu ande Hyman et al..

4.2. Free Convection in a Square Cavity

We consider a square cavity centered on x=0 and y=0 with length L (reference spatial scale), thermally insulated at
the top and bottom walls. A reference pressure p =0 is imposed at the center of the cavity. Non-slip velocity boundary

conditions are imposed on all walls. The cavity contains a fluid that is initially at rest at temperature 7;,. The left wall

temperature is T =T, +AT/2 and the right is at temperature 7 =T, —AT/2 . These boundary conditions at opposite
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parallel walls generate a free convection flow inside the cavity and. Once again, the numerical results are parameterized
with respect to the Prandtl and Rayleigh numbers.

The transients ran from 1=0 to t=60L/u,, where u, = \/ ,B(meC -T, m) g"L , with minimum element size of

0.005L .. In all cases this has been long enough to obtain convergence to steady-state. Figure 4 and Fig. 5 presents the

final adaptive mesh, temperature field, pressure field and velocity field for Ra = 105 and Ra =10° respectively. We
could note that for sufficiently high Rayleigh numbers, thermal stratification occurs.

Table 1 compares our results for the mean, maximum and minimum Nusselt numbers with Barakos et al. (1994) and
the benchmark provided by De Vahl Davis, (1983). The use of adaptive meshes in our computations allowed obtaining
results that agree within less than 2.2% with the benchmark data using much finer meshes. We could note that the local
Nusselt number increases with the Rayleigh number, as expected by the theory.

B ko T AR s

Figure 3: Adaptive mesh, temperature field, pressure field and velocity field for Ra = 10°and Pr=0.71

Figure 4: Adaptive mesh, temperature field, pressure field and velocity field for Ra = 10 and Pr=0.71

Table 1: Mean and maximum Nusselt numbers: comparison between the present results with those of De Vahl Davis, (1983).

Ra=10* Ra=10° Ra=10°

Nu max. | Numin. | Nu mean Nu max. | Numin. | Nu mean Nu max. | Nu min. | Nu mean
De Vahl
Davis, (1983) 3.528 0.586 2.243 7.717 0.729 4.519 17.923 0.989 8.799
Barakos et al.
(1994) 3.539 0.583 2.245 7.636 0.773 4.510 17.442 1.001 8.806
Present
method 3.529 0.584 2.244 7.723 0.721 4.519 17.528 0.971 8.807
5. CONCLUDING REMARKS

A second-order time accurate finite element formulation has been presented. The mass and momentum balances
have been combined in a Taylor series for pressure. This is discretized in space with the Galerkin method and results in
an equation suitable for computing the pressure update. Momentum balance and energy balance time-discretization are
carried out with finite differences. A least square minimization of spatial residuals is performed to obtain equations for
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the velocity and temperature update. The proposed method introduces automatically the stabilization terms required to
control wiggles in convection dominated problems and for circumventing Babuska-Brezzi restrictions on the choice of
interpolating spaces for velocity and pressure. The approach leads to a partially coupled system, where pressure degrees
of freedom are solved first and then the velocity and temperature degrees of freedom are computed simultaneously. The
update of velocity components and temperature are obtained solving the coupled equation system shown in Equation
(24). Numerical examples have been presented, covering free convection flow and heat transfer. Comparison of our
results with the benchmark numerical solutions and with experimental heat transfer data shows the good performance of
the stabilized formulation proposed here.
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