Proceedings of the ENCIT 2012 14th Brazilian Congress of Thermal Sciences and Engineering
Copyright © 2012 by ABCM November 18-22, 2012, Rio de Janeiro, RJ, Brazil

NUMERICAL SIMULATION OF NEWTONIAN AND NON-NEWTONIAN
FREE SURFACE FLOWS USING THE SDPUS-C1 UPWINDING SCHEME

Giseli Ap. B. Lima, giabl@icmc.usp.br

Miguel A. Caro Candezano, mcaro@icmc.usp.br

Lais Corréa, lacorrea@icmc.usp.br

Valdemir G. Ferreira, pvgf@icmc.usp.br

Instituto de Ciéncias Matematicas e de Computacéo, Unilage de Sdo Paulo, Avenida Trabalhor S&o-carlense, 40@; CIH60-
970, Sao Carlos, Séao Paulo, Brasil

Abstract. The study deals with the numerical simulation of complemrimgressible fluid flows using a new continuously
differentiable bounded convection scheme (called SDPWUS-The scheme is based on TVD stability criteria and imple-
mented in the context of finite difference methodology. En@pnance of the SDPUS-C1 scheme is assessed by solving
2D Newtonian and non-Newtonian moving free surface flows.
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1. INTRODUCTION

The appropriated modeling of convection terms is a key dointeproducing physical phenomena in fluid dynamics
problems. In order to make the simulations of these phenam@ore acceptable and reliable, there is an increasing
demand for development, analysis and implementation ofparinding convective scheme (in general nonlinear) which
offers simplicity, accuracy, robustness and versatili§uch a scheme is particularly important when incompressibl
moving free surface flows at high Reynolds numbers are sieulldn addition, schemes with these characteristics have
frequently been used for the approximation of the conved@vms into the constitutive equations of non-Newtoniad$lu
(Oishietal, 2011).

Inthis article the continuously differentiable boundeaviqing SDPUS-C1 (Six-Degree Polynomial Upwind Scheme
of C! Class) scheme, introduced recently bynfa et al., 2012, is employed for the numerical solution of complex in-
compressible free surface flows. This scheme is based on\th@lbrmalized Variable) ot eonard(1988 and satisfies
the TVD (Total Variation Diminishing) constraint éfarten(1983. It can achieve third-order accurate in the smooth parts
of the solution, but first-order near regions with high gesds.

The objective of the study is to evaluate the performancéi®fSDPUS-C1 scheme in solving 2D Newtonian and
non-Newtonian incompressible fluid flows with moving freefages. For this, the following problems are considered: i)
collapse of a column of a Newtonian fluid; and ii) the fountéiiw and extrudate swell of a non-Newtonian fluid. All
convective terms in the governing equations are approxichiay the SDPUS-C1 scheme. Results for the fountain flow
problem are used to assess the order of convergence of SBRWSheme. Other numerical results with this scheme
are confronted with the solutions obtained by the well dishbd WACEB (Weighted-Average Coefficient Ensuring
Boundedness)Songet al, 2000 and CUBISTA (Convergent and Universally Bounded Integtioh Scheme for the
Treatment of Advection)Alveset al,, 2003 upwind schemes.

2. GOVERNING EQUATIONS AND METHOD OF SOLUTION

The dynamics of a laminar flow is modeled by two equations: nfaess and momentum conservation which are,
respectively, given by
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wheret is the time,u; is the component of the velocity vectarjs the pressure, anklr = \/[;UTO is the Froude number,

beingU, and L, the velocity and length scales, respectivelyis the acceleration of gravity ang; theij components
of the extra-stress tensor. In the case of Newtonian fluids]dkis tensor is given by

2
Tij = EDija (3

with Re = Yole the Reynolds numbery is the viscosity of the fluid . The strain raf®;; in Eq. @) is given by
1 /0u; Ou;
Dy =- (S48 24, 4
J 2 ((’)xj + (’)xl> ( )

In the case of non-Newtonian fluid flows, the extra-stressdeis taken with the sum of Newtonian and non-
Newtonian contributions and given by

26
Tij= oD+ T (5)
— ~~~

Newtonian non—Newtonian

where = v, /1y is the ratio between the solvent viscosity and the solution viscosity, = vs + v, beginy, the
polymeric viscosity. The non-Newtonian contributigh is defined by the Oldroyd-B modeBird et al, 19873

orl O(urt))) ou; ou; 1-p
P Wi T L Rl QY § B 6
T W ot * oxy, Tik oxp Tik oxp Re 7 ©6)

whereWi = VL—%‘) corresponds to the Weissenberg number, with the paraméieing the relaxation time.

In both Newtonian and non-Newtonian cases, the equatiensupplemented with prescribed initial and boundary
conditions. At the inflow, the normal and tangential velesitare, respectively, given hy; = Uy andu = 0, and
TZ- = 0. At the outflow, the conditions ar§;‘—; = g;; = 0. On rigid boundaries, the no-slip condition is assumed for
the velocity, and the conditions f@f; on this boundary can be found Martins(2009. On a moving free surface, the
imposed conditions are - (0;; - @) =0 and 7 - (0ij - ) = 0, with o35 = —pdi; + 7ij.

In the solution procedure, the finite difference methodglisgemployed and the GENSMAC (GENeralized Simplified
Marker-And-Cell) method oTomé and Mcke€1994) is used. This method, defined on a staggered grid, is incatgd
into the 2D version of the Freeflow cod€dsteloet al,, 2000. Time derivatives are discretized (for simplicity) by the
explicit Euler method, while the spatial derivatives arpraximated by the second-order central differences, exbep
nonlinear convection terms which are approximated by thBl3®-C1 scheme.

3. THE SDPUS-C1 SCHEME

The SDPUS-C1 scheme approximates the numericaldluat a cell interfacef between two control volumes by
using three neighboring grid points, namely the DownstréBin the Upstream(() and the Remote-upstrearR), plus
the average convective velocity; at this face (see Fidl). The SDPUS-C1 scheme can then be represented by the
(non-normalized) relationship of the forgy = ¢ (ép, v, ¢r). The original variableg ; are transformed in NV of
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Figure 1. Interfacg and related grid points and convection velocity for upwirgdi

The advantage of this NV formulation is thé; depends om@U only, sinceg@D =1 anddBR = 0. Thus, the SDPUS-C1
scheme is rewritten as a normalized functional relatigngiien by(,%f = qgf(qBU). The derivation of the SDPUS-C1
scheme is summarized in the following.

Itis assumed thap; = ¢ (¢y) is a six-degree polynomial function far; € [0, 1] and a linear function (the first
order upwind schemeSpalding 1972) given bygﬁf = ¢y for ¢y ¢ [0, 1]. The coefficients of the polynomial are
calculated by imposing the following necessary and sufitc@®nditions ofLeonard(1988 for a nonlinear monotonic
third-order NV scheme

or(l) =1, éf(o) =0 (necessary conditions for monotonicity) (8)
and
@(0.5) = QB}(O.S) = 0.75 (necessary and sufficient conditions for third-order) (9)

plus, in order to avoid problems with convergence on coaesshesl(in and Chieng1997), the condition that the scheme
is a continuously differentiable, nameb)}(o) = qs}(l) = 1. A free parameter (say) is imposed to close the system of
equations. In summary, the SDPUS-C1 scheme is given by

(10)

4 — (=24 + 40) 3% + (68 — 120)8%; + (—64 + 130) G + (20 — 6X)G%, + Ao + du, q:SU e [0,1],
T e, du ¢ [0,1].

It can be showed (setiMmaet al, 2019) that this scheme satisfies the TVD constraintXog [4,12]. It worth noting
that a scheme that satisfies the TVD criterion is bounded egskpts physically acceptable solutiohsiften 1983. In
this study, the value of = 12 will be used in all simulations, since with this value theette generates better solutions
than those obtained by using other valued @f [4, 12] (Limaet al, 2012).

4. NUMERICAL RESULTS

Numerical results for moving free surface flow problems ggime SDPUS-C1 scheme are now presented. These
results are compared with experimental data and analgadations of the literature. In addition, results for Nenitm
and non-Newtonian fluid flows are confronted with those geteerby WACEB and CUBISTA schemes, respectively. For
this, three benchmark problems are considered, namelgeigdllapse of a (Newtonian fluid) column onto a horizontal
impermeable wall; and ii) the (hon-Newtonian fluid) fountdow and time-dependent extrudate swell.
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4.1 Newtonian fluid flow case

In the numerical results for a Newtonian fluid flow, the geameonsidered is a rectangular column where a specified
Newtonian fluid is in hydrostatic equilibrium and confinedveeen walls. A wall is instantaneously removed and the
fluid, under action of gravity, is free to flow out along theidigporizontal wall (see Fig). The domairD.3m x 0.15m
is discretized by600 x 300 computation cells, with the length and velocity scales giby Lo = a« = 0.05m and
Uy = 0.74778 m/s, respectively. The dimensionless parameters used inrhdation areRe = 426323.27 andFr = 1
(9 = 9.81m/s?). Figure3 depicts the experimental data Mfartin and Moyce(1952 and the numerical results with
SDPUS-C1 and WACEB schemes, for the position of the fluidtfrgg.. versus time (see Fi@). It can be seen, from
this figure, that the numerical results agree fairly welhatie experimental data. It can be also observed that thé@olu
with the SDPUS-C1 scheme competes very well with the saligenerated by the WACEB scheme.

Figure 2. Schematic diagram of the collapse of a fluid column.
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Figure 3. Experimental data &artin and Moyceg(1952 and numerical results with SDPUS-C1 and WACEB schemes
for collapse of a Newtonian fluid column.

4.2 Non-Newtonian fluid flow case

In this case, simulations are performed for two complex flajvhe fountain flow; and ii) the time-dependent extru-
date swell.

i) Fountain flow in this case, a non-Newtonian fluid is injected at the infldwhe a channel with a parabolic velocity
profile. Initially, there is a moving free surface along thenonel. The problem has a steady state analytical solution
(Bird et al, 1987h which is used for assessing the accuracy of the numerictiadesquipped with the SDPUS-C1
scheme. Analytical profiles for componentandr?, are

-un(2) (1 2)
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For the simulations, a channel of dimensi@ms x 10m is considered. The length and velocity scales afe= 1m

andU, = 1m/s, respectively, and the dimensionless parametersare- 0.1, 5 = 0.5 andWi = 2. The domain is
discretized by using three meshes withx 5, 50 x 10 and100 x 20 computacional cells. The relative erradts in a

mesh with spacing is calculated in thé,-norm as

Y(Es — Ns)?

|Enll2 =/ ——F%— (13)
s

where £ and Ng denote the exact and numerical solutions, respectivelg drder of convergencgis calculated of

usual way as
E
: <E§z> (14)

The fountain flow problem is simulated until final timeifs, since at this time the flow reaches the steady state regime.
Tablel shows the errors and the order of convergence of the nurherethod with the SDPUS-C1 scheme. From this
table it can be seen that, as the mesh is refined, the erramagedndicating convergence. In addition, one can clearly
noted that the scheme provides a convergence rate greate? fior the non-Newtonian contribution of the stress-tenso
and 2 foru-component of the velocity field.

q:

Table 1. Errors and the order of convergence for the nuneriethod equipped with SDPUS-C1 scheme. Results for the
fountain flow problem.

Variable Mesh lo-Error q
U 25 x5  0.54611 x 1071 —
50 x 10 0.14954 x 10~* 1.8686

100 x 20 0.36004 x 102 2.0543

. 25 x5 0.94033 x 10~ —
50 x 10 0.15752 x 10~} 2.5776
100 x 20 0.69010 x 10-2  1.1907

i) Time-dependent extrudate sweih this case, the problem consists of a jet of fluid exiting acbaillary of width
L; depending on the viscosity of the fluid, it swells and its thidxpands (seBlartins (2009 for more details). For the
simulation of this problem, the geometry is shown in Fglt is well known (see, for instancdanner(2000) that the
swelling rates,. is

Sy = 0.1+ [1+ 18(Wi)?]s (15)

and, at the wall of the domain in Fig, it can be measured whose result is (B&é et al. (1987D)

Sr=0.1+ [1+% (Lﬂ’)] (16)
Try
The numerical results fa,. obtained with the use of the SDPUS-C1 and CUBISTA schemeswiél 6) are compared
with those of Tanner given by EdL%). For the simulation, the domain ofm x 1m is discretized by0 x 20 computational
cells; the length and velocity scales are takei@s= 1m andU, = 1m/s, respectively. The dimensionless parameters
Re = 0.1, Fr =1 (g = 9.81m/s?) and3 = 0.64, and several Weissemberg numbers, narfiély= 0.2, 0.4, 0.6, 0.8,
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Figure 4. Schematic diagram for the extrudate swell problem

1.0 and1.2, are adopted in the computation f.

In Tab.2 and Fig 5, it is shown a comparison between Tanner’solution and nisaeesults at steady state-£ 80s)
for Sr. It can be observed that there is a good agreement betweanrerical results with both CUBISTA and SDPUS-
C1 schemes and the analytical solution. However,Jiar = 0.4, 0.6, 0.8 and 1.2 the numerical solutions with the
SDPUS-C1 scheme are better than that provided by CUBISTArseh

Table 2. Swelling rate of an Oldroyd-B fluid as a functiorlof.

Wi Tannet SDPUS-C? CUBISTA?

0.2 1.1946 1.3137 1.3097
0.4 1.3535 1.3738 1.3833
0.6 1.4985 1.4981 1.4811
0.8 1.6238 1.6243 1.6076
1.0 1.7335 1.7860 1.7687
1.2 1.8312 1.8627 1.8676

! Tanner'solution given by Eq16)
2 Numerical results measured by E6)
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Figure 5. Analytical solutionTanner 2000 and the numerical results with SDPUS-C1 and CUBISTA sclseioethe
extrudate swell problem.

As illustration, Fig.6 depicts the numerical solutions for velocity field, at tifhé3s and at steady state regime,
obtained with the SDPUS-C1 scheme for the swelling extrdced an Oldroyd-B fluid.

5. CONCLUSION

A TVD-based upwinding polynomial approximation for the gention term discretization (called SDPUS-C1) has
been applied for the solution of complex free surface flomsc@ses of Newtonian and non-Newtonian fluids). The
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Solution at0.13s Steady state solution
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Figure 6. Numerical solutions with the SDPUS-C1 schemendv, for the extrudate swell problem of a non-Newtonian
fluid at Wi = 0.6.

numerical results show that the scheme is an effective mo$tudying these complicated flows and competitive with
the well established WACEB and CUBISTA schemes. For ther@ytthe authors are planning to apply the SDPUS-C1
scheme to the numerical solution of turbulent flow of visesét fluids.
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