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Abstract. The study deals with the numerical simulation of complex incompressible fluid flows using a new continuously

differentiable bounded convection scheme (called SDPUS-C1). The scheme is based on TVD stability criteria and imple-

mented in the context of finite difference methodology. The performance of the SDPUS-C1 scheme is assessed by solving

2D Newtonian and non-Newtonian moving free surface flows.
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1. INTRODUCTION

The appropriated modeling of convection terms is a key pointfor reproducing physical phenomena in fluid dynamics

problems. In order to make the simulations of these phenomena more acceptable and reliable, there is an increasing

demand for development, analysis and implementation of an upwinding convective scheme (in general nonlinear) which

offers simplicity, accuracy, robustness and versatility.Such a scheme is particularly important when incompressible

moving free surface flows at high Reynolds numbers are simulated. In addition, schemes with these characteristics have

frequently been used for the approximation of the convective terms into the constitutive equations of non-Newtonian fluids

(Oishi et al., 2011).

In this article the continuously differentiable bounded upwinding SDPUS-C1 (Six-Degree Polynomial Upwind Scheme

of C1 Class) scheme, introduced recently by (Lima et al., 2012), is employed for the numerical solution of complex in-

compressible free surface flows. This scheme is based on the NV (Normalized Variable) ofLeonard(1988) and satisfies

the TVD (Total Variation Diminishing) constraint ofHarten(1983). It can achieve third-order accurate in the smooth parts

of the solution, but first-order near regions with high gradients.

The objective of the study is to evaluate the performance of the SDPUS-C1 scheme in solving 2D Newtonian and

non-Newtonian incompressible fluid flows with moving free surfaces. For this, the following problems are considered: i)

collapse of a column of a Newtonian fluid; and ii) the fountainflow and extrudate swell of a non-Newtonian fluid. All

convective terms in the governing equations are approximated by the SDPUS-C1 scheme. Results for the fountain flow

problem are used to assess the order of convergence of SDPUS-C1 scheme. Other numerical results with this scheme

are confronted with the solutions obtained by the well established WACEB (Weighted-Average Coefficient Ensuring

Boundedness) (Songet al., 2000) and CUBISTA (Convergent and Universally Bounded Interpolation Scheme for the

Treatment of Advection) (Alveset al., 2003) upwind schemes.

2. GOVERNING EQUATIONS AND METHOD OF SOLUTION

The dynamics of a laminar flow is modeled by two equations: themass and momentum conservation which are,

respectively, given by
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wheret is the time,ui is the component of the velocity vector,p is the pressure, andFr = U0√
gL0

is the Froude number,

beingU0 andL0 the velocity and length scales, respectively.gi is the acceleration of gravity andτij the ij components

of the extra-stress tensor. In the case of Newtonian fluid flows, this tensor is given by

τij =
2

Re
Dij , (3)

with Re = U0L0

ν0
the Reynolds number;ν0 is the viscosity of the fluid . The strain rateDij in Eq. (3) is given by
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In the case of non-Newtonian fluid flows, the extra-stress tensor is taken with the sum of Newtonian and non-

Newtonian contributions and given by

τij =
2β

Re
Dij

︸ ︷︷ ︸

Newtonian

+ τpij ,
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non−Newtonian

(5)

whereβ = νs/ν0 is the ratio between the solvent viscosityνs and the solution viscosityν0 = νs + νp, beginνp the

polymeric viscosity. The non-Newtonian contributionτpij is defined by the Oldroyd-B model (Bird et al., 1987a)
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whereWi = γU0

L0

corresponds to the Weissenberg number, with the parameterγ being the relaxation time.

In both Newtonian and non-Newtonian cases, the equations are supplemented with prescribed initial and boundary

conditions. At the inflow, the normal and tangential velocities are, respectively, given byu−→n = U0 andu−→
t
= 0, and

τpij = 0. At the outflow, the conditions are∂ui

∂x−→n
=

∂τ
p

ij

∂x−→n
= 0. On rigid boundaries, the no-slip condition is assumed for

the velocity, and the conditions forτpij on this boundary can be found inMartins(2009). On a moving free surface, the

imposed conditions are−→n · (σij ·
−→n ) = 0 and

−→
t · (σij ·

−→n ) = 0, with σij = −pδij + τij .

In the solution procedure, the finite difference methodology is employed and the GENSMAC (GENeralized Simplified

Marker-And-Cell) method ofTomé and Mckee(1994) is used. This method, defined on a staggered grid, is incorporated

into the 2D version of the Freeflow code (Casteloet al., 2000). Time derivatives are discretized (for simplicity) by the

explicit Euler method, while the spatial derivatives are approximated by the second-order central differences, except the

nonlinear convection terms which are approximated by the SDPUS-C1 scheme.

3. THE SDPUS-C1 SCHEME

The SDPUS-C1 scheme approximates the numerical fluxφf at a cell interfacef between two control volumes by

using three neighboring grid points, namely the Downstream(D), the Upstream (U ) and the Remote-upstream (R), plus

the average convective velocityVf at this face (see Fig.1). The SDPUS-C1 scheme can then be represented by the

(non-normalized) relationship of the formφf = φf (φD, φU , φR). The original variablesφ[ ] are transformed in NV of
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Leonard(1988) as

φ̂[ ] =
φ[ ] − φR

φD − φR

. (7)

RR DD UU

Vf > 0 Vf < 0

φf
φf

ff

Figure 1. Interfacef and related grid points and convection velocity for upwinding.

The advantage of this NV formulation is thatφ̂f depends on̂φU only, sinceφ̂D = 1 andφ̂R = 0. Thus, the SDPUS-C1

scheme is rewritten as a normalized functional relationship given byφ̂f = φ̂f (φ̂U ). The derivation of the SDPUS-C1

scheme is summarized in the following.

It is assumed that̂φf = φ̂f (φ̂U ) is a six-degree polynomial function for̂φU ∈ [0, 1] and a linear function (the first

order upwind scheme (Spalding, 1972)) given by φ̂f = φ̂U for φ̂U /∈ [0, 1]. The coefficients of the polynomial are

calculated by imposing the following necessary and sufficient conditions ofLeonard(1988) for a nonlinear monotonic

third-order NV scheme

φ̂f (1) = 1, φ̂f (0) = 0 (necessary conditions for monotonicity) (8)

and

φ̂f (0.5) = φ̂
′

f (0.5) = 0.75 (necessary and sufficient conditions for third-order), (9)

plus, in order to avoid problems with convergence on coarse meshes (Lin and Chieng, 1991), the condition that the scheme

is a continuously differentiable, namelyφ
′

f (0) = φ
′

f (1) = 1. A free parameter (sayλ) is imposed to close the system of

equations. In summary, the SDPUS-C1 scheme is given by

φ̂f =

{

(−24 + 4λ)φ̂6
U + (68− 12λ)φ̂5

U + (−64 + 13λ)φ̂4
U + (20− 6λ)φ̂3

U + λφ̂2
U + φ̂U , φ̂U ∈ [0, 1],

φ̂U , φ̂U /∈ [0, 1].
(10)

It can be showed (see (Lima et al., 2012)) that this scheme satisfies the TVD constraint forλ ∈ [4, 12]. It worth noting

that a scheme that satisfies the TVD criterion is bounded and presents physically acceptable solutions (Harten, 1983). In

this study, the value ofλ = 12 will be used in all simulations, since with this value the scheme generates better solutions

than those obtained by using other values ofλ ∈ [4, 12] (Lima et al., 2012).

4. NUMERICAL RESULTS

Numerical results for moving free surface flow problems using the SDPUS-C1 scheme are now presented. These

results are compared with experimental data and analyticalsolutions of the literature. In addition, results for Newtonian

and non-Newtonian fluid flows are confronted with those generated by WACEB and CUBISTA schemes, respectively. For

this, three benchmark problems are considered, namely: i) the collapse of a (Newtonian fluid) column onto a horizontal

impermeable wall; and ii) the (non-Newtonian fluid) fountain flow and time-dependent extrudate swell.
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4.1 Newtonian fluid flow case

In the numerical results for a Newtonian fluid flow, the geometry considered is a rectangular column where a specified

Newtonian fluid is in hydrostatic equilibrium and confined between walls. A wall is instantaneously removed and the

fluid, under action of gravity, is free to flow out along the rigid horizontal wall (see Fig.2). The domain0.3m× 0.15m

is discretized by600 × 300 computation cells, with the length and velocity scales given by L0 = a = 0.05m and

U0 = 0.74778m/s, respectively. The dimensionless parameters used in the simulation areRe = 426323.27 andFr = 1

(g = 9.81m/s2). Figure3 depicts the experimental data ofMartin and Moyce(1952) and the numerical results with

SDPUS-C1 and WACEB schemes, for the position of the fluid front xmax versus time (see Fig.2). It can be seen, from

this figure, that the numerical results agree fairly well with the experimental data. It can be also observed that the solution

with the SDPUS-C1 scheme competes very well with the solution generated by the WACEB scheme.

a = 0.05m

b = 0.1m

g

xmax

Figure 2. Schematic diagram of the collapse of a fluid column.
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Figure 3. Experimental data ofMartin and Moyce(1952) and numerical results with SDPUS-C1 and WACEB schemes

for collapse of a Newtonian fluid column.

4.2 Non-Newtonian fluid flow case

In this case, simulations are performed for two complex flows: i) the fountain flow; and ii) the time-dependent extru-

date swell.

i) Fountain flow: in this case, a non-Newtonian fluid is injected at the inflow of the a channel with a parabolic velocity

profile. Initially, there is a moving free surface along the channel. The problem has a steady state analytical solution

(Bird et al., 1987b) which is used for assessing the accuracy of the numerical method equipped with the SDPUS-C1

scheme. Analytical profiles for componentsu andτpxx are

u(y) = 4U0

(
y

L0

)(

1−
y

L0

)

, (11)
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For the simulations, a channel of dimensions2m × 10m is considered. The length and velocity scales areL0 = 1m

andU0 = 1m/s, respectively, and the dimensionless parameters areRe = 0.1, β = 0.5 andWi = 2. The domain is

discretized by using three meshes with25 × 5 , 50 × 10 and100 × 20 computacional cells. The relative errorsEh in a

mesh with spacingh is calculated in thel2-norm as

||Eh||2 =

√

Σ(ES −NS)2

ES

, (13)

whereES andNS denote the exact and numerical solutions, respectively. The order of convergenceq is calculated of

usual way as

q =

log

(

||Eh||2
||Eh

2
||2

)

log2
. (14)

The fountain flow problem is simulated until final time of50s, since at this time the flow reaches the steady state regime.

Table1 shows the errors and the order of convergence of the numerical method with the SDPUS-C1 scheme. From this

table it can be seen that, as the mesh is refined, the errors decrease indicating convergence. In addition, one can clearly

noted that the scheme provides a convergence rate greater than 2 for the non-Newtonian contribution of the stress-tensor

and 2 foru-component of the velocity field.

Table 1. Errors and the order of convergence for the numerical method equipped with SDPUS-C1 scheme. Results for the
fountain flow problem.

Variable Mesh l2-Error q
u 25× 5 0.54611× 10−1 —

50× 10 0.14954× 10−1 1.8686
100× 20 0.36004× 10−2 2.0543

τpxx 25× 5 0.94033× 10−1 —
50× 10 0.15752× 10−1 2.5776

100× 20 0.69010× 10−2 1.1907

ii) Time-dependent extrudate swell:in this case, the problem consists of a jet of fluid exiting of acapillary of width

L; depending on the viscosity of the fluid, it swells and its width expands (seeMartins(2009) for more details). For the

simulation of this problem, the geometry is shown in Fig.4. It is well known (see, for instance,Tanner(2000)) that the

swelling rateSr is

Sr = 0.1 + [1 + 18(Wi)2]
1

6 (15)

and, at the wall of the domain in Fig.4, it can be measured whose result is (seeBird et al. (1987b))

Sr = 0.1 +

[

1 +
1

2

(
τpxx − τpyy

τpxy

)]

. (16)

The numerical results forSr obtained with the use of the SDPUS-C1 and CUBISTA schemes viaEq. (16) are compared

with those of Tanner given by Eq. (15). For the simulation, the domain of10m×1m is discretized by80×20 computational

cells; the length and velocity scales are taken asL0 = 1m andU0 = 1m/s, respectively. The dimensionless parameters

Re = 0.1, Fr = 1 (g = 9.81m/s2) andβ = 0.64, and several Weissemberg numbers, namelyWi = 0.2, 0.4, 0.6, 0.8,
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Figure 4. Schematic diagram for the extrudate swell problem.

1.0 and1.2, are adopted in the computation ofSr.

In Tab.2 and Fig.5, it is shown a comparison between Tanner’solution and numerical results at steady state (t = 80s)

for Sr. It can be observed that there is a good agreement between thenumerical results with both CUBISTA and SDPUS-

C1 schemes and the analytical solution. However, forWi = 0.4, 0.6, 0.8 and1.2 the numerical solutions with the

SDPUS-C1 scheme are better than that provided by CUBISTA scheme.

Table 2. Swelling rate of an Oldroyd-B fluid as a function ofWi.

Wi Tanner1 SDPUS-C12 CUBISTA2

0.2 1.1946 1.3137 1.3097
0.4 1.3535 1.3738 1.3833
0.6 1.4985 1.4981 1.4811
0.8 1.6238 1.6243 1.6076
1.0 1.7335 1.7860 1.7687
1.2 1.8312 1.8627 1.8676
1 Tanner’solution given by Eq. (15)
2 Numerical results measured by Eq. (16)

0.25 0.5 0.75 1 1.25
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SDPUS-C1
CUBISTA

Figure 5. Analytical solution (Tanner, 2000) and the numerical results with SDPUS-C1 and CUBISTA schemes for the
extrudate swell problem.

As illustration, Fig.6 depicts the numerical solutions for velocity field, at time0.13s and at steady state regime,

obtained with the SDPUS-C1 scheme for the swelling extrudedfrom an Oldroyd-B fluid.

5. CONCLUSION

A TVD-based upwinding polynomial approximation for the convection term discretization (called SDPUS-C1) has

been applied for the solution of complex free surface flows (in cases of Newtonian and non-Newtonian fluids). The
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Solution at0.13s Steady state solution
u

v

Figure 6. Numerical solutions with the SDPUS-C1 scheme,u andv, for the extrudate swell problem of a non-Newtonian
fluid atWi = 0.6.

numerical results show that the scheme is an effective tool for studying these complicated flows and competitive with

the well established WACEB and CUBISTA schemes. For the future, the authors are planning to apply the SDPUS-C1

scheme to the numerical solution of turbulent flow of viscoelastic fluids.
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