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Abstract. The purpose of present paper is to show a comparison between Boundary Fitted Coordinate Finite Volume 

Method (BFC) with steady state formulation  and Immersed Boundary Method (IBM) with Fourier pseudospectral 

transient formulation. Two dimensional confined flow over circular cylinder is solved with incompressible Navier-

Stokes equations where  BFC method uses a structural non ortogonal grid with QUICK and 2nd Order Upwind 

schemes for spatial discretization and IBM method uses a regular spacing grid configuration. The problem is 

performed at various Reynolds number based on channel width and mean inlet velocity, 10Re250 and various 

blockage ratios =D/H, 0.10.9. Flow streamlines and pressure distribution along the channel, cylinder drag 

coefficient, inlet-outlet pressure coefficient, stable-instable flow conditions identification are presented as result of 

analisys.   

 

Keywords: Boundary Fitted Coordinate, Immersed Boundary Method, Finite Volume Method, Pseudospectral Method, 

Flow over confined cylinder. 

 

1. INTRODUCTION 

 

A computational fluid dynamic issue is to define how apply boundary conditions with accuracy and computational 

efficiency in flows over complex geometries. Two classical methods are well known, the finite volumes method (FVM) 

using boundary fitted coordinates and immersed boundary method (IBM). The boundary conditions in FVM is directly 

applied, since the mesh is body fitted and adapted exactly over the complex geometry, but is necessary to use a grid 

generation code to generates the grid over the computational domain. Furthermore, if the geometry moves or changes, 

the grid generation algorithm should be used in each time step. On the other hand, the IBM arise to solve computational 

efficiently flow problems over complex and deformable geometries (Peskin, 2002). The grid in IBM is always regular 

spaced (Fig. 1b), and the geometry is represented by a source term in Navier-Stokes equations. The drawback of this 

method is the accuracy of results over the geometry, this decreased of accuracy is due the interpolation and distribution 

functions.  

The flow past over cylinders is very common to find in engineering and a particular configuration, of confined 

cylinder, appears in hydraulic and pneumatic valves and blood stream in veins with greasy walls (Ye et al., 2010). 

Important information to know about this kind of flow is the velocity and pressure distribution and identification of 

recirculation zones.  In the present work two different numerical methods were used to predict the flow patterns in this 

situation. Boundary fitted coordinate in finite volume method with QUICK and 2nd Order Upwind discretization 

schemes and pseudospectral method with immersed boundary approach, which use a cartesian grid. 

 

2. PROBLEM GEOMETRY, BOUNDARY CONDITIONS AND GRID CONFIGURATION 

 

The flow problem geometry consist in a rectangular two dimensional channel with a circular cylinder symmetrically 

positioned inside it, as described in (Fig. 1). 
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Figure 1. Computational domain and boundary conditions 

The inlet profile is considered to be fully developed Poiseuille profile given by: 
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where 0y0,1 ; 0D0,1 

 

The blockage ratio is defined as the relation between the channel high and the cylinder diameter, =D/H, and the 

Reynolds number is defined as: 

max
Re

DU


 ,            (2) 

where Umax is the maximum inlet velocity at channel symmetry. 

 

Figure 2 shows the grid configuration used in finite volume and immersed boundary methods. 

 

   
                                                (a)                                                                                           (b) 

 

Figure 2. Grid used in (a) Finite Volume Method and (b) Immersed Boundary Method. 

 

For finite volume method to assure the maximum regularity between the grid generated for various blockage ratios, 

is necessary to create block grids as shows in Fig. (3). Block 1 and 2 are the same for all situations, only the block 3 is 

adjustable for various blockage ratios. 

 

   
      (a)     (b)    (c) 

 

Figure 3. Block diagram grid for finite volume method (a) =0,1  (b) =0,5 (c) =0,9 

 

Table (1) shows the grid density configuration used in each case. 

 

Table 1: Grid density for finite volume and immersed boundary methods. 

 

 Block 1 Block 2 Block 3 Block 4 Global 

(BFC) 

Global (IBM) 

=0,1 150x50(7500) 50x10(500) 50x40(2000) 1200x50(60000) 79050 900x160(144000) 

=0,3 150x50(7500) 50x10(500) 50x30(1500) 1200x50(60000) 77050 - 

=0,5 150x50(7500) 50x10(500) 50x10(500) 1200x50(60000) 73050 900x160(144000) 

=0,7 150x50(7500) 50x10(500) 50x10(500) 1200x50(60000) 73050 - 

=0,9 150x50(7500) 50x10(500) - 1200x50(60000) 71050 900x160(144000) 

 

 

2. MATHEMATICAL MODELING 

 

In the present section two-dimensional Navier-Stokes and continuity equations are presented. Furthermore, the 

formulation of Immersed Boundary Method (IBM) based in multi-direct forcing (Wang et al., 2007) coupled with 

Fourier pseudospectral method (Mariano, 2010b). 
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2.1 Mathematic model for the fluid 

 

The flow is governed by conservation momentum equation (Eq. 3) and the continuity equation (Eq. 4). The 

equations that model the problem are presented in theirs tensorial form: 
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; p* is the static pressure in [N/m2]; lu  is the velocity in l direction in [m/s]; 

*
l

l

f
f


 ; 

*
lf  is the 

term source in [N/m3];   is the density;   is the cinematic viscosity in [m2/s]; lx  is the spatial component (x,y) in [m] 

and t is the time in [s]. The initial condition is any velocity field that satisfies the continuity equation.  

 

2.2 Mathematic model for Immersed Boundary Method 

 

In IBM method the information of the fluid/solid interface (domain Γ) is passed to the eulerian domain (Ω) for 

addition of the term source to Navier-Stokes equations. This term plays a role of a body force that represents the 

boundary conditions of the immersed geometry (Goldstein et al, 1993). The source term is defined in all domain Ω, but 

presents different values from zeros only in the points that coincide with the immersed geometry (Eq. 5), enabling that 

the eulerian field perceives the presence of solid interface (Enriquez-Remigio and Silveira Neto, 2007). 

 

 
 , if

,
0 if

l k k

l

k

F x t x x
f x t

x x










 (5) 

 

where x  is the position of the particle in the fluid and  kx  is the position of a point in solid interface (Fig. 4). 

The lagrangian force field is calculated by direct forcing methodology, which was proposed by Uhlmann (2005). 

One of the characteristics of this model is modeling the non-slip boundary condition on immersed interface. 

 

 
 

Figure 4. Schematically representation of eulerian and lagrangian domain (Mariano et al, 2010b). 

 

The Eq. (5) can be conclude that the field  ,lf x t  is discontinuous, which can be numerically solved only when 

there are coincidence between the points that compose the interface domain and the compose the fluid domain. In cases 

there is no coincidence between these points, (complex geometries), it is necessary to distribute the function  ,lf x t  on 

its neighborhoods. Just by calculating the Lagrangian force field  ,l kF x t , it can be distributed and thus, transmitted the 

information geometry presence for Eulerian domain, these functions can be found in Griffith and Peskin, (2005).  
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The Lagrangean force field, in the present study, is calculated by the direct forcing method (DFM), which was 

proposed by Wang et al. (2008). One of the characteristics of this model is that is not necessary to use ad-hoc constants 

and allows the non-slip condition modeling on immersed interface. The Lagrangean force,  ,
l k

F x t , is available by 

momentum conservation equation over a fluid particle that is joined in the fluid-solid interface: 
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The values of  ,
l k

u x t   and  ,
k

p x t  are given by interpolation of velocities and pressure, respectively, of the 

Eulerian points near the immersed interface (Lima e Silva et al., 2003). For Lagrangean points, 
k

x , at the immersed 

boundary, we have: 
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where u* is a temporary parameter, as defined in Wang et al. (2008), Δt is the time step and RHS are the terms of the 

right hand side of Eq. (6).  The Eq. (7) is solved by Eqs. (8) and (9) at the same time step: 
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where  ,
l k

u x t t   is the immersed boundary velocity, i.e. the specific boundary condition, normally known. 

Equation (8) is solved in the Eulerian domain in the Fourier spectral space, i.e. the solution of Eq. (4) with fl=0.        

 *
,

l k
u x t t   is interpolated for the Lagrangean domain and became  ,

l k
u x t t   and it is computed on Eq.12. Then 

 ,
l k

F x t  is smeared for Eulerian mesh. Finally, the Eulerian velocity is updated by Eq. 8: 
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2.3 Fourier Pseudospectral Method 

 

The methodology used by solving Navier-Stokes equations with IBM is the Fourier pseudospectral method 

(Canuto et al., 2007). It consists in applied the Fourier transformed in Eqs. (1) and (2), given:   
 

ˆ 0j jik u   (11) 
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The Navier-Stokes equations, Eq. 12, are transformed to spectral space using the Discrete Fourier Transform (DFT), 

which is defined by Briggs and Henson (1995) and computationally performed by Fast Fourier Transform (FFT) given 

in Takahashi (2006). The boundary conditions are imposed by coupling IBM, this methodology is named 

IMERSPEC (Mariano et al. 2010).  

The convolution integral to solve the non-linear term was solved using the skew-symmetric approach (Canuto et al., 

2006). And the temporal evolution is performed by low dispersive and low dissipative explicit forth order optimized 

Runge-Kutta (Allampalli et al. 2009). 
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3. RESULTS 

 

Figure 5 presents the solution of the instantaneous horizontal velocity field superimposed by vector velocity near 

the cylinder using the IBM for two different β ratios at Re=100. It is possible to verify the effect of β over the 

recirculation zone, that decrease when β increase. In Fig. 5 can be noted the virtual flow generated by immersed 

boundary method within the cylinder, which appears to close momentum equation (Eq. 3). 

 

  
Pressure distribution 

  
Stream function  

  
Pressure distribution 

  
Stream function  

Figure 5. Solution obtained using IBM(left) BFC(right) for flow over cylinder to Re=100 and (a) β=0,1, and (b) 

β=0,9. 

 

Figure 5 shows the streamlines obtained by finite volume simulation using BFC, for the same parameters using in 

IBM. The solutions obtained in case of FVM is steady and the recirculation bubble appears downstream the cylinder. 

For  β=0,9 the recirculation is less than β=0,1 as expected at Re=100.  

In order to compare the solutions of IBM and BCF, two parameters are presented in Tab. 1, the drag and pressure 

coefficients given by Eqs. 13 and 14, respectively, for different Reynolds numbers (Eq. 2) and different aspect ratios 

(β). 
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where Fx is the force in horizontal direction over the cylinder surface, in IBM is provide by Eq. 9 and in BFC is 

performed by a surface integral, Pin and Pout are the mean pressure at inlet and outlet of domain. 
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In Fig. 6 is presented the comparison of pressure and drag coefficients, for different aspect ratios, β. The results are 

closed for β=0.5 and β=0.9, however for β=0.1 we verify differences. This behavior can be explained by the 

insufficiency of points in the interior of cylinder modeled by immersed boundary, i.e., to well represent the internal 

flow of immersed geometry the IBM requires a high density of points. 

 

0 50 100 150 200 250
25 75 125 175 225

Reynolds

0.1

1

10

100

1000

10000

P
re

s
s
u

re
 C

o
e
ff
ic

ie
n
t 

- 
C

p

=0,1

=0,3

=0,5

=0,7

=0,9

Recr

IBM_01

IBM_05

IBM_09

STABLE

UNSTABLE

       
0 50 100 150 200 250

25 75 125 175 225

Reynolds

0.1

1

10

100

1000

10000

D
ra

g
 c

o
e
ff
ic

ie
n

t 
- 

C
d

=0,1

=0,3

=0,5

=0,7

=0,9

Recr

IBM_01

IBM_05

IBM_09

STABLE

UNSTABLE

 
                                             (a)                                                                                             (b) 

Figure 6. Comparison of pressure (a) and drag (b) coefficients between IBM and BFC for different aspect ratios. 

 

In all simulations performed using IBM, in the present paper, the number of points are constant and to change a 

Reynolds number we adapted the cylinder diameter. This way, for large aspect ratios the cylinder has more points in its 

interior. 

Other factor that explained the differences in pressure coefficient are the periodic boundary conditions of Fourier 

pseudospectral method. For modeling the boundary conditions, inlet and outlet, of domain we imposed the buffer zone 

this procedure modified the pressure field, and can be solved using a large domain. For more details report to Mariano, 

(2010a). 

Figure 6 also is presented a study of the stability region for different blockage ratios. In the left of red line define 

the region where the flow is stable, without oscillations. And in other side is the range of Reynolds number that the flow 

is unstable or present the periodical ocillations. 

 

4. CONCLUSIONS 

 

In the present paper a comparison between immersed boundary method and boundary fitted coordinate are 

performed in flows over confined cylinders. For these simulations the results show that BFC is more efficient because 

the IBM require more mesh points to well represent the cylinder interface.  

It is important highlight that the interface is static, when we have interfaces that move or deform the mesh 

generation of BFC is not attractive. 
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