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Abstract. To study two-phases flow numerically the high level of mesh refinement is required to model the physical dis-

continuities present in the flow. This approach has a high computational cost (memory storage and CPU time processing).

On the other hand, high order methods are an alternative way to obtain the solution of Navier-Stokes equations. In the

present work, a hybrid methodology Fourier pseudo-spectral method and Front tracking/Front capturing methods are pre-

sented for numerical simulation of two phase-flows with non periodic boundary condition. Results for the rise cylindrical

bubble are presented.
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1. INTRODUCTION

Bubbles flows have a important role in geophysical and industrial processes. The applications generate researches
to understand the hydrodynamics moving of the bubbles at different conditions. A major issue is to understand how the
bubble moves in flow and how the continuous phase is affected by the dispersed phase.

The numerical simulation of these flows requires high accuracy in order to model the thin interfaces. High accuracy
can be obtained from mesh refinement, the drawback of this approach is the increase the computational cost (CPU time and
memory storage). On the other hand, high order methods increase the accuracy of solution partial differential equations
(EDP) using less points in domain. The disadvantage is the requirement of more mesh points to solve the EDP derivatives
(large stencil).

In the present paper the Fourier pseudo-spectral method (FPSM) is adopted. It has high accuracy and high-order
numerical convergence, furthermore, a low computational cost when compared with another high order methods (Canuto
et al., 2007). To solve Navier-Stokes equations for incompressible flows using FPSM we can use the projection method
(Canuto et al., 2007), this approach decouple the pressure field of the velocity field, thus it is not necessary to solve the
Poison equation. The main drawback of FPSM is the imposition of boundary conditions which must be periodic (Briggs
and Henson, 1995).

The objective of the present work is to simulate the rise of a bubble using the IMERSPEC methodology coupled with
the Front-Tracking/Front-Capturing method.

2. MATHEMATICAL MODELING

The method Front-Tracking/Front-Capturing developed by Unverdi and Tryggvason (1991) is defined by a stationary
regular mesh (Ω = Ω1 ∪ Ω2), Fig. 1, to solve the Navier-Stokes equations and an unstructured mesh to model the
immersed interface, Γ, which can move on stationary mesh Ω, Fig. 1. The subdomains Ω1 is the continuous phase
and Ω2 is the dispersed phase. The Eulerian formulation models the fluid dynamics in the field Ω = Ω1 ∪ Ω2 and the
Lagrangian formulation describes the movement of interface Γ.
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Figure 1. Schematic representation of domains: Eulerian, Ω = Ω1 ∪ Ω2 (continuos phase) and Lagrangian, Γ (dispersed
phase).

The mathematical modelling to Eulerian field consider isothermal and incompressible flows of two immiscible New-
tonian fluids with different physical properties, viscosity coefficient and density. Eqs. (1) and (2) represent the equations
of continuity and balance of linear momentum, respectively.
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where ρ e µ are the density and viscosity of the fluid, respectively, ul is the component l the velocity vector, p is the
fluid dynamic pressure, fl is the component l the force vector field, gl is the component l of gravitational acceleration and
l = 1, 2, for two-dimensional problems, xl the spatial coordinate and t the time.

The term ρ0
ρ gl, where ρ0 = (1−α)ρc+αρd, and α, the volume fraction between the continuous and dispersed phases,

represents the fluid-static pressure gradient, which is a non-periodic pressure added to gravitational term. This is due to
the fact that by using the Fourier pseudo-spectral method, the pressure-velocity decoupling is given by the projection
method (Canuto et al., 2007; Unverdi and Tryggvason, 1991).

The source term fl(~x, t) =
∫

Γ
Fl( ~X, t)δ(~x− ~X)dxl allows the communication between the Navier-Stokes equations,

solved in the Eulerian domain , Eq. 2, and the equations for interface motion, solved in the Lagrangian domain. Thus, the
Eulerian source term is nonzero on the interface and zero else where.

Fl( ~X, t) = σκηl, is the component l of Lagrangian force calculated on fluid particles which comprises the interface.
σ is the surface tension coefficient, κ is the curvature and ηl the component l of the normal vector interface, the vector Xl

is the position of a particle of fluid that is on the interface, as shown in Fig. 1.
From the definition of the Fourier transform and its properties (Canuto et al., 2007) we obtain the continuity and

Navier-Stokes equations (Eqs.(1) and (2)), transformed foward to Fourier space (Eqs. (3) and (4)).

ikl ûl = 0, (3)
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where ̂TNLl is the non-linear term ikk ̂(uluk), D̂IFl is the diffusive term 1
ρ̂ ∗ ikk ∗ [µ̂ ∗ (ikkûl + iklûk)] and ̂GRAVl is
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the buoyancy term 1
ρ̂ ∗ ̂(ρ− ρ0)gl.

It is noteworthy in Eq. (4) the independence of the periodic pressure term, which has been replaced by projection
tensor ¯̄℘ of the source terms, advective, diffusive and buoyancy. Compared with classical schemes, this approach is
equivalent to replace the solution of Poisson equation for a matrix-vector product, in numerical terms, it is computationally
cheaper. In physical terms, both have the same function, which is to ensure the conservation of mass. Although the
periodic pressure field does not appear in the Navier-Stokes equations, it can be recovered using post-processing, as
shown in Villela (2011).

3. NUMERICAL METHOD

3.1 Discrete Fourier Transform and Fast Fourier Transform

The discrete Fourier transform (DFT) given by Eq. 5, allow to work with Fourier Transform numerically.

f̂k =

N
2∑

n=−N
2 +1

fne
−2πikn
N , (5)

where k is the wave number, N is the number of grid points, n provides the position xn placement (xn = n∆x) and
i =
√
−1.

The DFT transforms a function f , periodic (Villela, 2011), from physical space to Fourier spectral space (Eq. 5). The
Inverse Discrete Fourier Transform (IDFT) is presented by Eq. 6:
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Cooley and Tukey (1965) developed an algorithm named Fast Fourier Transform (FFT), which solves efficiently the
DFT and the IDFT (Eq. 6), becoming it attractive to solve partial differential equations using the Fourier spectral method.
The disadvantage of this technique is the restriction to problems with periodic boundary conditions.

The wave numbers kl, used in the transformed equations, are calculated as follows (Eq. 7):

klη =

{
η − 1 1 ≤ η ≤ N

2 + 1,

η − 1−N N
2 + 2 ≤ η ≤ N.

(7)

where η is the position vector in a direction of the domain.
This parameter should be fit for each subroutine FFT used. In the present paper, the subroutine FFTE was used and is

given by Takahashi (2007), which can be found in www.ffte.jp, was used.

3.2 Treatment of non-linear term

When working with the Navier-Stokes equations using the Fourier pseudo-spectral method, the resolution of non-linear
term is given by a convolution integral (Briggs and Henson, 1995). Solving this integral numerically becomes impractical,
then Fourier pseudo-spectral method is applied and the basic algorithm can be found at Mariano et al. (2010a).

The non-linear term can be treated in different forms (Canuto et al., 2007), and have different properties when it is
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discretized. In the present work, a skew-symmetric form (Eq.8) is used, because of their stability:
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3.3 Discretization of source term

As seen in subsection 2., Lagrangian force density is depend on interface curvature, κl and the unit normal vector nl.
The discretizations of the vector nl and the κl are made using the Lagrange polynomials (Villela, 2011).

3.4 Time discretization

It is necessary to use a time advanced methodology that is compatible with the high accuracy of the spectral method-
ology applied in the space. The best results are obtained with the of optimized Runge Kutta time advancement method
(RK46). This method is an explicit method of fourth order and six stages. The algorithm is given by Allampalli et al.

(2009).

3.5 Filtering Process

Another important procedure is the need to filter all the terms on the right hand side of the Navier-Stokes equations due
to the discontinuities generated by the source term, which shows abrupt changes in physical properties. These discontinu-
ities generate the Gibbs phenomenon (Villela, 2011), and with the filter process, tends to disappear leading to increased
accuracy. The filtering process is given by Eq. 9:

f̂(~k, t)filtrado = ϕ(θ)f̂(~k, t), (9)

where ϕ(θ) is the filter function.
In the present work the filter used is the "Raised Cosine". Its mathematical model can be found at Mariano et al.

(2010b).

4. RESULTS

The verification of the algorithm proposed was done using the manufactured solution method, where it was found that
the method reaches round-off errors. The results can be found in Villela (2011).

Figure 2 shows the time evolution of a rising non-deformable bubble. The computational domain is Ω = [0; 0, 1] ×
[0; 0, 2], the surface tension σ = 9, 0 [N/m], bubble diameter dd = 0, 03 [m] and the computational grid has nxXny =

256 × 512 colocation points, in x and y directions, respectively. The boundary conditions are u = 0 and v = 0 at
y = 0, 003125[m] and y = 0, 096875[m] and periodic in y = 0[m] and y = 0, 2[m]. To work with other boundary
conditions, which is not provided periodicity, must couple the Fourier pseudo-spectral method with immersed boundary
method (Mariano et al., 2010a).

The bubble remains circular as expected for the parameters adopted in Clift et al. (1978). Furthermore, the pressure
difference between continuos and dispersed phases, ∆P , is calculated. The numerical result is ∆PN = 596, 68[N/m2]

and analytical solution is ∆PA = 600, 00[N/m2]. The relative error is 0, 55%.
In Fig. 2, we have dimensionless time is give by t∗ = t√

dd/g
.
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(a) (b) (c) (d)
Figure 2. Field of the indicator function in: (a) t∗ = 0; (b) t∗ = 2, 53; (c) t∗ = 7, 95 e (d) t∗ = 13, 38.

5. CONCLUSIONS

The present work, two-dimensional numerical simulations of two-phase flows using the Fourier pseudo-spectral
method coupled with the hybrid method Front-Tracking/Front-Capturing were presented. Flows with rising of cylindrical
bubbles, are presented and the difference between numerical and analytical solutions of pressure difference is 0,55%. The
results for rising bubbles are consistent experimental results of others authors.
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