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Abstract. A reactivity transient without reactor scram was modeled and calculated using analytical expressions for the 

space distributions of the temperature fields, combined with discrete numerical calculations for the time dependences 

of thermal power and temperatures. The transient analysis covered the time dependencies of reactivity, global thermal 

power, fuel heat flux and temperatures in fuel, cladding and cooling water. The model was implemented in Microsoft 

Office Excel, dividing the Excel file in several separated worksheets for input data, initial steady-state calculations, 

calculation of parameters non-depending on eigenvalues, eigenvalues determination, calculation of parameters 

depending on eigenvalues, transient calculation and graphical representation of intermediate and final results. The 

results show how the thermal power reaches a new equilibrium state due to the negative reactivity feedback derived 

from the fuel temperature increment. Nevertheless, the reactor mean power increases 40% during the first second and, 

in the hottest channel, the maximum fuel temperature goes to a significantly high value, slightly above 2100 
0
C, after 8 

seconds of transient. Consequently, the results confirm that certain degree of fuel damage could be expected in case of 

a reactor scram failure. Once the basic model has being established the scope of accidents for future analyses can be 

extended, modifying the nuclear power behavior (reactivity) during transient and the boundary conditions for coolant 

temperature. A more complex model is underway for an annular fuel element. 
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1. INTRODUCTION 

 

Non-stationary heat transfer problems emerge in several engineering areas (Behera and Kumar, 2009). They are part 

of the education process in Universities, where solutions are implemented with teaching purposes (Janáčová et al., 

2011). Specifically, they are of major interest for nuclear power plants where thermal regime of nuclear fuel is crucial 

for safety (Blinkov et al., 2010).  

 

Methods from Mathematical Physics constitute the basic theoretical framework for the analyses of non-stationary 

heat transfer problems (Tijonov and Samarsky 1972). Unfortunately, analytical solutions can be obtained only for a 

limited amount of problems involving relatively simple geometries and mathematical functions as initial and boundary 

conditions (Blomberg, 1996). 

 

The present paper provides an application of analytical methods from Mathematical Physics to the solution of a 

transient heat transfer problem in a cylindrical nuclear fuel rod due to a positive reactivity jump without reactor scram. 

Analytical expressions were obtained for the space distributions of the temperature fields. They were combined with 

discrete numerical calculations for the time dependences of thermal power and temperatures. The transient analysis 

covered the time dependencies of reactivity, global thermal power, fuel heat flux and temperatures in fuel, cladding and 

cooling water. 

 

2. MODEL DESCRIPTION 

 

Figure 1 shows the two regions for which the time dependant one-dimensional heat transfer equation was solved: the 

fuel region ( ) and the cladding region ( ). It is assumed the existence of angular symmetry and that 

the domain of interest is sufficiently far from the rods extremes, so that the z-dependence can be neglected. The 

materials properties are assumed uniform and not temperature dependant. 

 

 

 

 

 

 

 

 

Figure 1. Diagram of the modeled fuel element. 
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The boundary value problems for the fuel temperature  and the cladding temperature  are similar to 

those solved in (Jian and Cotta, 2001) using the improved lumped parameter formulation.  

 

For fuel:        

 

 ;       (1) 

 

          (2) 

 

           (3) 

 

     (4) 

 

For cladding: 

 

 ;       (5) 

 

          (6) 

 

      (7) 

 

      (8) 

 

In the preceding expressions, “ρ” is the material density, “c” is the material specific heat, “k” is the thermal 

conductivity, “hg” is the heat transfer coefficient through the gap between fuel and cladding, “h” is the heat transfer 

coefficient between cladding and cooling water, “g(t)” is the internal heat source density in the fuel,   is the 

steady-state fuel temperature field,    is the steady-state cladding temperature field and “Tm(t)” is the water 

coolant mean temperature inside the reactor core. The parameters with subscript “f” correspond to fuel and with 

subscript “c” to cladding. Note that the boundary conditions (4), (7) and (8) are non-homogeneous of third kind, 

corresponding to a thermal heat transfer following the Newton law. The model is solved using the following steps: 

 

2.1 Determination of the steady-state initial temperature distributions  and  

 

Starting from the global initial thermal power, the number of fuel elements, the reactor core height, the mass coolant 

flow ant the initial coolant temperature, ordinary differential equations are solved for fuel and cladding, with the proper 

boundary conditions, leading to expressions (9) and (10), where A, B and C are known constants determined for fuel 

(subscript “f”) and cladding (subscript “c”): 

 

        (9) 

 

         (10) 

  

2.2 Analytical Solution for fuel 

 

The solution for is proposed as , where  is constructed in such a way that 

the resulting auxiliary problem for  had homogenous boundary conditions (Tijonov and Samarsky, 1972). For 

this geometry, the function: 

 



Proceedings of ENCIT 2012           14
th
 Brazilian Congress of Thermal Sciences and Engineering 

Copyright © 2012 by ABCM               November 18-22, 2012, Rio de Janeiro, RJ, Brazil 

  

           (11) 

        

leads to the following boundary value problem for : 

 

 ;      (12) 

 

         (13) 

 

           (14) 

 

       (15) 

 

where  is a known constant for fuel and  is given by the expression: 

 

+     (16) 

 

The auxiliary problem for is a problem with homogenous boundary conditions, leading to eigenfunctions for 

the space variable “r”, in terms of the Bessel function of zero order and first kind  . The eigenvalues λ are the 

solutions of the transcendent equation: 

 

       (17) 

 

There is no analytical expression for the eigenvalues, which are first located by a search algorithm and afterwards 

determined with the desired precision using a bisection method algorithm. 

 

Actually,  is the sum of the solutions for two auxiliary problems and . The results are: 

 

 
(18) 

 
(19) 

 

 ;   n = 1, 2, 3, 4...       (20) 

 

In the expression (19),   are the coefficients of the series development of , given by (16), in terms of the 

eigenfunctions . represents the contribution of the initial steady-state temperature field, vanishing 

after just a few seconds.  considers the cumulative temperature effect at the time “t” coming from the heat 

produced by the sources at all the previous times “τ”. 
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Several integrals had to be solved for the determination of the coefficients  and ; integrals of the type 

, , , . Unfortunately, the integrals 

with even exponents of “r” cannot be solved using simple integration formulas. They are solved in terms of the Struve 

functions (Abramowitz and Stegun, 1970). Some details on Struve functions can be found in (Newman, 1984). For the 

numerical solution of the problem there were used algorithms for the evaluation of the Struve functions. The norms of 

the Bessel eigenfunctions were evaluated by the usual formula (Abramowitz and Stegun, 1970). 

 

2.3 Analytical Solution for cladding 

 

The solution for cladding can be obtained, following a similar process, as explained for the fuel region in section 

2.2. The main difference is that the eigenfunctions of the problem for cladding are linear combinations of the 

zero order Bessel functions of first and second kind, known as Bessel and Neumann functions, respectively. In the case 

of cladding, integrals are of the same type of those for fuel and are solved in a similar way. The formulas for   

are also valid for . An additional integral was solved analytically: . The 

corresponding expressions of the analytical solution for cladding are the followings: 

 

    (21) 

 
             (22) 

 

;  n = 1, 2, 3, 4, ...    (23) 

 

 are the roots of the transcendent expression: 

 

   (24) 

 

 is given by: 

 

      (25) 

 

 
(26) 

 

 ;   n = 1, 2, 3, 4...       (27) 

 

In (26)  are the coefficients of the series development of  in terms of the eigenfunctions . 

is determined by the expression: 
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         (28) 

 

2.4 Coolant temperature model 

 

Based on the thermal balance of heat transferred from cladding and the one evacuated by the circulating coolant, 

assuming a constant coolant inlet temperature at the reactor core, the following ordinary differential equation problem 

was stated for coolant temperature: 

 

    (29) 

 

;              (30) 

 

            (31) 

 

where “Sc” is the cladding outer surface, “Mm” is the total coolant mass in the primary circuit, “cm” is the coolant 

specific heat, “Gm” is the coolant mass flow, “Tmi” is the fix coolant inlet temperature and “Tm0” is the initial steady-

state coolant mean temperature. 

 

The solution of (29) with (31) gives an expression of the type: 

 

 
(32) 

2.5 Reactivity model 

 

It was implemented the point kinetics model with 6 groups of delayed neutrons, leading to the following problem: 

 

 
(33) 

 

 (34) 

 

After the integration of (34), the following expressions were obtained: 

 

  (35) 
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             (36) 

 

where  is the instant neutron power, is the instant reactivity,  is the total fraction of delayed 

neutrons, are the concentration, the fraction of delayed neutrons and the radioactivity decay constant 

corresponding to the precursor nuclide of the group “j” of delayed neutrons, respectively;  is the mean lifetime of a 

neutron generation,  is the initial steady-state neutron power and is the initial steady-state concentration of the 

precursor nuclide of the group “j” of delayed neutrons. 

 

2.6 Transient model 

 

The model is constituted by the interrelated expressions for reactivity and temperatures fields in fuel, cladding and 

coolant that were previously described. For each time “t” the power from the neutron model determines the fuel 

temperature field via  in equation (1). Then follows that the fuel temperature determines the cladding temperature 

via  in expressions (21) and (28) and, lastly, the cladding temperature determines the coolant temperature via 

 in expression (32). At the same time the cladding temperature  is required in expressions (11) and 

(16) of the fuel model and, on the other hand, the coolant temperature  is required in expressions (21) and (28) 

of the cladding model. Finally, the fuel temperature introduces a feedback into the neutron model due to the fuel 

temperature reactivity coefficient via  in expression (36). 

 

Under the conditions previously explained, it is impossible to find analytical explicit expressions for the time 

dependencies of thermal power and temperature fields. Consequently, the transient was calculated evaluating 

numerically the analytical spatial solutions for discrete time values, using a time step of 0.01 second. New heat fluxes 

and temperatures are determined for the successive times, using the variables previous values for the precedent time, 

together with the thermal power for the current calculation time. Thermal power is estimated by the 

expression , where  is derived from (36), with  corrected by the fuel temperature 

reactivity coefficient. 

 

The integrals of the type , appearing in several terms of the model (see (19), (26), 

(32) and (36)) where solved numerically, using the trapezium method, leading to the following expression: 

 

 
(37) 

 

where  is the interval used for the time dependant calculations, and , are the index 

corresponding to the calculated times , previous to the current time  .  

 

The integrals of the type  were transformed into integrals of the type “I”, using: 

 

 
(38) 
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3. MAIN RESULTS 

 

The model was implemented in Microsoft Office Excel, dividing the Excel file in several separated worksheets for 

input data, initial steady-state calculations, calculation of parameters non-depending on eigenvalues, eigenvalues 

determination, calculation of parameters depending on eigenvalues, transient calculation and graphical representation of 

intermediate and final results.  

 

A case study was stated, based on the cells parameters used in (Hang and Chang, 2003), but considering a solid fuel 

rod instead of an annular one. Once the input data are introduced the program automatically calculates the steady-state 

variables and the parameters non-depending on the eigenvalues. Using a command button the user gives the order for 

the eigenvalues calculation and the program automatically calculates the eigenvalues and also the parameters depending 

on them. Figure 2 illustrates the eigenvalues determination in fuel and cladding. They are the zero-values of the 

represented functions. Finally, the user presses the command button for the transient calculation to run the complete 

model. All the intermediate and final results can be easily inspected and checked for consistence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Graphics illustrating the eigenvalues determination in fuel and cladding. 

 

The eigenvalues are determined in a few seconds. Ten eigenvalues for cladding and one hundred eigenvalues for 

fuel are sufficient for temperature calculations with numerical precision up to the second decimal place. For these 

amount of eigenvalues the whole transient of 400 seconds was calculated in about 10 minutes, using a time step of 0,01 

second (40000 points evaluation). Table 1 is a partial copy of the numerical results for the hottest channel, available in 

the transient calculation worksheet.  

 

Table 1. Results for the first second of transient analysis. 

 

t [s] P(t) 

(MW) 

q  

(kW/m) 

Tf(rfo,t) 

(°C) 

Tfmax(t) 

(°C) 

Tc(rci,t) 

(°C) 

Tc(rco,t) 

(°C) 

Tm(t) 

(°C) 

ρ(t) Tfmed(t) 

(°C) 

0,00 7037,50 51,16 636,21 1993,14 415,21 379,63 343,47 0,002 1314,677 

0,10 8697,17 63,22 637,28 1993,31 415,39 379,70 343,47 0,001959 1316,049 

0,20 9266,31 67,36 639,21 1996,16 415,83 379,92 343,47 0,001875 1318,828 

0,30 9433,25 68,57 641,21 1999,49 416,32 380,17 343,48 0,00178 1322,018 

0,40 9450,19 68,69 643,07 2002,94 416,79 380,41 343,49 0,001683 1325,257 

0,50 9410,70 68,41 644,75 2006,36 417,22 380,64 343,50 0,001588 1328,412 

0,60 9349,82 67,96 646,25 2009,71 417,61 380,84 343,52 0,001497 1331,44 

0,70 9281,02 67,46 647,60 2012,97 417,97 381,03 343,54 0,001411 1334,327 

0,80 9209,74 66,95 648,82 2016,12 418,29 381,21 343,56 0,001328 1337,069 

0,90 9138,37 66,43 649,91 2019,18 418,58 381,37 343,58 0,00125 1339,672 

1,00 9068,09 65,92 650,90 2022,13 418,84 381,51 343,61 0,001176 1342,138 
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Figure 3 shows the power and fuel temperatures behavior in the hottest channel during the first 50 seconds of the 

transient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Behavior of Thermal Power and Temperature fields during the first 50 seconds of the transient. 

 

The results show how the thermal power reaches a new equilibrium state due to the negative reactivity feedback 

derived from the fuel temperature increment. Nevertheless, the reactor mean power increases 40% during the first 

second and, in the hottest channel, the maximum fuel temperature goes to a significantly high value, slightly above 

2100 
0
C, after 8 seconds of transient. Consequently, the results confirm that some fuel damage could be expected in 

case of a reactor scram failure. 

 

4. CONCLUSIONS 

 

A reactivity transient without reactor scram was modeled and calculated using analytical expressions for the space 

distributions of the temperature fields, combined with discrete numerical calculations for the time dependences of 

thermal power and temperatures. The results show the self-regulation of nuclear reactor power. The importance of the 

reactor scram to avoid fuel damages was confirmed. 

 

Once the basic model has being established the scope of accidents for future analyses can be extended, modifying 

the nuclear power behavior (reactivity) during transient and the boundary conditions for coolant temperature. A more 

complex model is underway for an annular fuel element. 
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