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Abstract. The numerical simulation of fluid flow involving complex geometries is greatly limited by the spatial grid res-

olution required. These flows often contain small regions with complex motions, while the remaining flow is relatively

smooth. Adaptive mesh refinement (AMR) enables the spatial grid to be refined in local regions that require finer grids

to resolve the flow. This work describes an approach to parallelization of a structured adaptive mesh refinement (SAMR)

algorithm. This type of methodology is based on locally refined grids superimposed on coarser grids to achieve the

desired resolution in numerical simulations. The main elements to achieve parallelization of SAMR algorithms are a

dynamic load-balancing method to distribute work to processors and a dynamic distribution technique to manage com-

munications. The methodology is based on a message passing model using the recursive coordinate bisection (RCB) for

domain partition. For this work, a semi-implicit projection method has been implemented to solve the incompressible

Navier-Stokes equations.
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1. INTRODUCTION

Over the past years, the improvement of computational methods for solving the incompressible Navier-Stokes equa-
tions for fluid flow problems, the increase in computing capacity and the advent of parallel computer, have proven to be
very useful for better understanding the physics of various fluid flows of increased complexity. However, the required
mesh resolution to accurately resolve small scale fluid motions at specific regions containing large gradients, such as
shocks and interfaces, combustion and near-wall regions of complex boundaries, remains as a limitation for these meth-
ods.

One approach to relieve the issue of mesh resolution is called Adaptive Mesh Refinement (AMR). Adaptively refining
and coarsening local regions of the computational domain results in varying levels of spatial grid resolution, which are
locally determined by accuracy requirements. Methods based on SAMR start with a coarse base grid with minimum
acceptable resolution that covers the entire computational domain. As the solution progresses, regions in the domain
with unacceptable solution errors, requiring higher resolution, are identified and refined. Refinement proceeds recursively
so that the refined regions requiring higher resolution are similarly tagged and even higher resolution grids are overlaid
on these regions (Berger and Colella, 1989). The result is a dynamic adaptive grid hierarchy, as shows Fig. 1. Parallel
implementations of SAMR methods offer the potential for accurate simulations of high complexity fluid flows. However,
they present interesting challenges in dynamic resource allocation, data-distribution and load-balancing. The overall
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Figure 1. Block-structured mesh composed by three refinement levels in a computational domain [0, 1] × [0, 1] × [0, 1].
(a) Three-dimensional mesh; (b) slice in x = 0.42; (c) slice in z = 0.45; (d) slice in y = 0.3 Nós (2007).

efficiency of parallel SAMR applications is limited by the ability to partition the underlying grid hierarchies at run-time
to expose all inherent parallelism, minimize communication and synchronization overheads, and balance load.

This work presents an approach to parallelization of block-structured adaptive mesh refinement for the incompressible
Navier-Stokes equations. The domain partition and load balance are performed using the Recursive Coordinate Bisection
method (RCB) implemented on Zoltan load balancing library (Devine et al., 2002).

2. METHODOLOGY

The flow of an incompressible fluid is governed by mass and momentum conservation laws, which take the form of
the Navier-Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + ρg, (1)

∇ · (u) = 0, (2)

where u is the velocity vector, p is the pressure, ρ and µ are density and dynamic viscosity, respectively and g represents
the gravitational acceleration. The projection method applied to solve the Eq. (1) and Eq. (2) splits the time advancement
of the variables into two main steps: advancing an approximate velocity field, and then projecting that field onto the
divergence free field. An approximation to the velocity field, ũ, is obtained using a semi-implicit temporal discretization
method, used by (Villar, 2007) and described by (Ascher et al., 1995):

ρ

∆t

(
α2ũ

n+1 + α1ũ
n + α0ũ

n−1) =

λ∇2ũn+1 + β1h1(ũn, µ) + β0h0(ũn−1, µ)−∇pn + ρg, (3)
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where

h = −λ∇2u +∇ ·
[
µ
(
∇u +∇uT

)]
− u · ∇u, (4)

λ = Cλ ‖ µ ‖∞ . (5)

In this paper, we adopt Cλ = 2. This choice is based in the work of (Ceniceros et al., 2010), which were guided by their
own Numerical experiments and by the recent work of (Xu and Tang, 2006).

To resolve the Eq. (1) and Eq. (2), we still need to define the elliptic partial differential equation, or Poisson equation
to calculate the pressure correction q,

∇ ·
(

1

ρ
∇qn+1

)
=
α2

∆t
∇ · ũn+1, (6)

where the Eq. (3) and Eq. (6) should be solved using the Multilevel Multigrid Method.

2.1 Load Balance

The main function of parallel computing is to distribute data among processors. However, when AMR is involved to
adaptively increase the resolution of the grid only where it is needed, to reduce the workload, the mesh keeps changing
in computation. In this situation a dynamic load balancing algorithm needs to be called every time the mesh is refined.
This work uses the Recursive Coordinate Bisection method (RCB) for load balance and domain partition. The RCB
method was first proposed as a static load-balancing algorithm by (Berger and Bokhari, 1987), but is also attractive as a
dynamic load-balancing algorithm for AMR because it implicitly produces incremental partitions according to the mesh
refinement. The algorithm chooses a direction and then split the mesh by making an appropriate perpendicular cut. The
position of the cut should be such that an equal number of mesh elements fall on either side of it. The sub-domains are
then further divided by recursive application of the same splitting algorithm until the number of partitions reaches the
number of processors.

The load balancing algorithm implemented in this work uses the RCB method of Zoltan load balancing library pro-
posed by Devine et al. (2002). Zoltan is a toolkit for parallel load balancing and data management in scientific computing
developed by Sandia National Laboratories. It contains a collation of load balancing algorithms. Zoltan also supports
Graph, Hypergraph partitioners, some of them implemented by Zoltan itself and others are from some famous third party
load balancing library. These features helped Zoltan to build an unified interface, so that the users can easily switch from
one load balancing algorithm to another algorithm.
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Figure 2. Weights distribution over an adaptive mesh hierarchy.
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3. RESULTS

To evaluate both the parallel version of the implementation of the Multilevel Multigrid Method and the parallel ver-
sion of the projection method, we perform a convergence test for the Navier-Stokes equations based on the Method of
Manufactured Solutions. For the validation of the proposed methodology, we simulated the case of a sliding lid cavity for
Reynolds numbers 100, 400 and 1.000.

3.1 Verification Methodology

The convergence test is performed with load balance, 8 processors and a 323 base level grid with two refinement
levels, using Dirichlet boundary conditions for pressure p and Neumman boundary conditions for the velocity field u.
Fig. 3 shows the composite mesh used in the numerical convergence test. For this test, the Navier-Stokes equations for an

(a) (b)

Figure 3. Composite mesh (32L3), used in the numerical convergence test. (a) Perspective view, (b) cross section view at
z = 0.5.

incompressible fluid flow are

ρ
(∂u
∂t

+ u · ∇u
)

= −∇p+∇ ·
[
µ
(
∇u +∇uT

)]
+ f , (7)

where f is the forcing therm,

f = ρe
∂ue

∂t
+ ρe · ue(∇ue) +∇pe −∇ · (µe∇ue). (8)

The exact solutions for the velocity field ue for the pressure field pe, density ρe and viscosity µe are given by

ue = sen2(2πx+ 2πy + 2πz + t), (9)

ve = −cos2(2πx+ 2πy + 2πz + t), (10)

we = 2cos2(2πx+ 2πy + 2πz + t), (11)

pe = cos(2πx+ 2πy + 2πz + t), (12)

ρe = 1 + sen2(2πx), (13)

µe = 1 + 0, 2cos2(2πx+ 2πy + 2πz + t). (14)
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where the exact solutions for ue, ve, we should be chosen to ensure that ∇u = 0. The Tab. 3.1shows that all velocities
u, v, w reach second order for spatial convergence order, and the pressure p reaches first order for spatial convergence
order.

Table 1. Parallel convergence test for Navier Stokes equations.

Mesh p w v w
‖φ− φe‖2 re ‖φ− φe‖2 re ‖φ− φe‖2 re ‖φ− φe‖2 re

163L2 0,581 - 1,57E-2 - 1,50E-2 - 2,50E-2 -
323L2 0,195 2,98 4,05E-3 3,88 4,01E-3 3,74 6,92E-3 3,61
643L2 0,064 3,04 1,05E-3 3,85 1,03E-3 3,89 1,84E-3 3,75

3.2 Lid Driven Cavity Flow

For the validation of the proposed methodology, we simulated the case of a sliding lid cavity for Reynolds numbers
100, 400 and 1.000. The dimensions of the computational domain are 1m × 1m × 1m, the sliding velocity of the lid is
u0 = 1m/s and the density ρ = 1kg/m3. The viscosity is calculated using the Reynolds number, ie µ = u0ρL/Re,
where L is the cavity length. The cases for Re = 100 and Re = 400 were performed using 16 processors and a 163 base
level grid with 3 refinement levels. For Re = 1000, the simulation was performed using 32 processors, 323 base level
grid with two refinement levels. The obtained results are compared with those from (Deshpande and Milton, 1998) for
Re = 1000 and with those of (Ku et al., 1987) for Re = 100 and Re = 400. The comparisons are carried out by means
of the velocity u along the vertical axis (y) of the cavity at x/L = 0.5 and z/L = 0.5 and velocity v along the horizontal
axis (x) of the driven cavity at y/L = 0.5 and z/L = 0.5. Fig. 4 shows a representative sketch of a three-dimensional
sliding lid cavity.
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Figure 4. Representative sketch of a three-dimensional sliding lid cavity

Figures 5 and 6 show u and v velocity profiles for Re = 100 and Re = 400, which present good agreement with
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Figure 5. Comparison of velocity profiles in a composite mesh 16L3 using 16 processors for Re = 100. (a) u(y) at
x/L = 0.5 and z/L = 0.5; (b) v(x) at y/L = 0.5 e z/L = 0.5.
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Figure 6. Comparison of velocity profiles in a composite mesh 16L3 using 16 processors for Re = 400. (a) u(y) at
x/L = 0.5 and z/L = 0.5; (b) v(x) at y/L = 0.5 e z/L = 0.5.

the numerical results of (Ku et al., 1987). The simulation time for Re = 100 was of 33 minutes in parallel and 300

minutes in serial, leading to a gain of approximately 9 times in the total time of simulation. The simulation for Re = 400

spent 40 minutes in parallel and 420 minutes in serial, which represents a gain of approximately 10 times in the total time
of simulation. The Fig. 7 shows the u and v velocity profiles for Re = 1000, which present good agreement with the
numerical results of (Deshpande and Milton, 1998).

Figure 8 shows the number of computational cells at each processor for 4 time steps. There was an increase in the
number of cells of all time steps, because in the early stages of the simulation, regions of high vorticity are concentrated in
the upper region of the cavity, forcing the adaptive mesh to concentrates at this location. Generally, there is a reasonable
distribution of the computational load throughout the simulation, however, in some cases the difference between the
number of cells is up to 50%, which degenerates parallel performance.
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Figure 7. Comparison of velocity profiles in a composite mesh 32L3 using 32 processors for Re = 1000. (a) u(y) at
x/L = 0.5 and z/L = 0.5; (b) v(x) at y/L = 0.5 e z/L = 0.5.
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Figure 8. Distribution of computational cells in 32 processors for a composite mesh 32L3 for Re = 1000. (a) 12s; (b)
23s; (c) 35s; (d) 47s.
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4. CONCLUSION

A parallelization approach, with dynamic load balancing, using the Zoltan library was implemented for a 3D numer-
ical code based on the SAMR methodology. Preliminary results shows a stable behavior and the maintenance of the
characteristic of the original code: second order of convergence for the velocities and the same accuracy.
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