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Abstract The Finite Volume method (FVM) and Fourier Pseudospectral method (FPM) are applied to solve non-linear

evolution equation, named Burgers equation, with a viscosity ν= 0.2 [m2/s] and advecting with the velocity c=4.0 [m/s].

The goal is to determine the behavior of the solutions periodic and of non-periodics boundary conditions with both

methods. Towards the FVM, was used the upwind and central-difference interpolation scheme. Which was possible

to show in periodic domain, with central-difference scheme, reach the better results than upwind scheme. In simulations

obtained by FPM, the results confirm the high accuracy of Fourier Pseudospectral method and reach round-off errors only

periodic domain. However non-periodic domain using immersed boundary method attaining second order convergence.
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1. INTRODUCTION

The Burgers equation serves as a useful model for many interesting problems in applied mathematics. It models
effectively several problems of a fluid flow nature, in which either shocks or viscous dissipation is a significant factor,
(Smith, 1997). That equation has two specific regions: the high and low property variations, as shown at Fig. 5.

The Burgers equation consists by partial differential equation (PDE) in one spatial dimension. Which is similar to
one-dimensional Navier-Stokes equation without the pressure term. Its name from the extensive research of Burgers
(1939). It is a very important fluid dynamical model both the conceptual understanding of a class of physical flows and
for testing numerical algorithms (Zhang et al., 1997). In order to investigate the two differents numeric methodologies,
finite volumes and Fourier pseudospectral, the Burgers equation was solved.

The finite volume method (FVM) is a discretization method which is well suited for the numerical simulation of
various kinds of conservation laws. It is normaly used in several engineering fields: fluid mechanics, heat and mass
transfer, among others. This methodogly is based on approach to physics of the problem represented by the PDE. The
solution strategy of the FVM, is divide the domain into a number of control volume that corresponds to the mesh cells as
Fig. 1 (Maliska, 1995; Patankar, 1980),
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Figure 1. Scheme of the domain divisions performed with the finite volume method.

In Figure 1 the E is east, W west and P is “central-volume”; the ∆x is the distance between the boundary volume and
δxe and δxw are the distance between center of volumes. The approximate equations are obtained through a balance of
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property involved conservation, which are integrate at the control volume.
Fourier spectral method (FPM) is based at solution at integration the term of Fourier series (DFT) along all discrete

domain. The DFT is used to evaluate spatial derivatives in place of conventional finite volume. In according of Roache
(1978) the use of the DFT over M nodepoints corresponds to using M-th order trigonometric interpolation to evaluate
the derivatives. This procedure is of “infinite order”, in the sense that it may be shown to converge faster than any finite
volume expression when all derivatives are continuous. Although it is, to require only periodic boundary condition.

FPM use physical and spectral domains, which are co-related by reciprocity relation. The spectral methods applied
to problems with smooth solutions attain high order of spatial convergency rates, because it use all collocation points to
calculate a derivative in one point, Fig. 2 (Basdevant, 1984; Canuto et al., 2006).

Figure 2. Scheme of spectral method and finite volume method used at derivative operations.

The aim of this paper is report, discuss and compare: the convergence order and accuracy, of numerical results of both
methods. Thereunto in Burger equation was used the periodic boundary condition, in the domain (-π:π), and non-periodic
boundary condition, in domain (-π2 :π2 ). For this boundary condition was used the immersed boundary only at FPM. Due
to it requeres solely the pereiodic boundary conditions.

2. THE BURGERS EQUATION ANALYTICAL SOLUTION

The one-dimensional Burgers equation is given by Eq.( 1), where the u is the velocity profile [m/s], x is the position
of domain [m] and ν is the viscosity coefficient [m2/s]. The initial condition is given by Eq.( 2), where the c is the
advective velocity. The boundary conditions are two cases: the first is periodic and second one is non-periodic, imposed
by immersed boundary method..

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0 in Ω, ∀t > 0. (1)

u(x, 0) = c+ ub(x, 0) (2)

The equation ( 3) is analytical solution, as sugested in Canuto et al. (2006);

ub(x, t) = −2ν

∂φ

∂x
(x− ct, t+ 1)

φ(x− ct, t+ 1)
; φ(x, t) =

∞∑
n=−∞

e

−[x− (2n+ 1)π]2

4νt (3)
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3. NUMERICAL METHODS

3.1 Finite volume method

The finite volume method uses the integration around the control volume, Fig. 1. Accordingly with, Eq.( 4) the Eq.( 1)
is integrated at space and time.

(ut+∆t − ut)
∆t

=

∫ e

w

NLT

∆x
− ν
(uE − uP

δxe
− uP − uW

δxw

) 1

∆x
(4)

The non linear term at the Eq.( 1) can be study by three differents scheme: advective u(∇u), divergent 1
2 (∇uu) and

skew-simetric 1
2 [u∇u + 1

2 (∇uu)], in agreements with Souza (2005) this work uses the skew-simetric form due to the
stability.

Although the FVM used in this paper is second order spacial derivates. The time discretization scheme is explicit, and
the time advance was is the classical fourth order Runge-Kutta as Canuto et al. (2006).

The non-linear term, discretizated by the skew-simetric scheme aforementioned is given by Eq.( 5):

TNL =
uP (ue − uw)

2∆x
+
ueue − uwuw

2∆x
(5)

Where the subscript e, w are the position of east and west face the principal volume ,Fig. (1). The uP is the velocity
at the main volume, and the ue, uw are the velocities at the faces. These velocities were obtained by upwind or central-
difference scheme.

The upwind scheme assumes that value of the velocity u at an interface is equal to the value of the u upstream.

{
if u > 0 ue = uP

if u < 0 ue = uE
(6)

Its the same to the west side. The central-difference is between the propriety at the central-behind volume and central-
front volume. The velocity of the non-linear term is obttained by Eq.( 7):

uw =
1

2
(uW + uP ) ue =

1

2
(uE + uP ) (7)

3.2 Fourier Pseudospectral method

The solution of the Eq.( 1) using Fourier pseudospectral method, is given by Eq.( 8).

ût+∆t − ût

∆t
= −ikû ∗ u+ (ik)2û (8)

Where û is the velocity transformated to Fourier space using the DFT, k is the wave number, and i is the complex
number

√
−1. It can be noted the convolution product at NLT, is use the Fourier pseudospectral method.

The advective term at Eq.( 8) results at integral convolution, its requers high computational cost (memory storage
and CPU time). Then to avoid this, we used the pseodospectral method. Therefore in the pseudospectral method was
implemented at skew-simetric form, following sequencies:

First calculate de divergent form, 1
2 (∇uu), likes :

1. calculate the multiplicate the velocity at physical space, as uu;
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2. transform the product to spectral space, as ~̂u~u;

3. calulate the derivative and multiplicate by 1
2 ;

Second calculate the advective form, u(∇u), likes:

1. transform the field ~u from physical space to spectral space;

2. calculate the velocity derivatives ik~̂u;

3. calculate the inverse transformated the velocity derivatives and multiplicate with the velocity in the physical space;

4. transformate the derivates from the physical space to spectral space;

After obtained the advective and divergent form realize the arithmetic mean.

3.3 Immersed boundary method - IBM

The term immersed boundary method, is used in presente paper to reference a method developed by Peskin(1970),
with the aim of simulated the cardiac mechanics valves and associated blood flow. Wherefore, is necessary use two
domains, lagrangian and euleran domain. The first is independent of eulerian domain, wich get model any object.

Figure 3. Scheme of domain used by the immersed boundary method.

The Fig.3 represents the domain used by calculate the immersed boundary, where −→x represents position any point at
the field Eulerian (Ω) and

−→
X position any point at the field Lagrangian (Γ), (Mariano, 2011).

The spectral method works only periodic boundary conditions. Due to this, the Eq.( 1) is modified:

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
+ fx = 0 (9)

Where fx is the source term, which represents the field force. In the present work it is the force from immersed
boundary, which is written by:

fx =

{
Fx(
−→
X, t) if −→x =

−→
X

0 if −→x 6=
−→
X

(10)

The Direct-Forcing method (DFM) is used to calculate the Lagrangian field. The DFM developed by Mohd-Yusof
(1997) extracts the forcing directly from the numerical solution, which is determined by difference between the interpo-
lated velocities in the boundary points and the desired at the physical boundary velocities. For the purpose of discussion
of the general concepts, let us write the time-discretized Burgers equation, Eq.(9), in the following form:
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ut+∆t − u∗ + u∗ − ut

∆t
+ rhs+ fx = 0 (11)

Where rhs regroups the convective and viscous terms at some intermediate time level between t and t+∆t. The
euleraian force term which yields the temporal parameter u∗ is then the Eq. (11) is solved in two steps, given by Eqs. (12)
and (13) :

u∗ − ut

∆t
+ rhs = 0 (12)

The lagrangian source term isgiven by Eq.(13) for Xl.

Fx =
U t+∆t − U∗

∆t
∀Xl (13)

Where Ut+∆t is the boundary condition and U∗ is the temporal parameter interpolated. Lastly the update by the
eulerian velocity is given by Eq.( 14) where fx is calculated by Eq.( 10) .

ut+∆t = u∗ + fx∆t (14)

The major advantage of the discrete forcing concept is the absence of user specified parameters in the forcing and the
elimination of associated stability constraints (Mittal and Iaccarino, 2005). Thus is possible to solve the Burgers equation
with non-periodic boundary conditions using the pseudospectral method coupled with IBM.

Ltotal

LusefulL forceLcomp L force Lcomp

Figure 4. Scheme of Immersed boundary method, used in this work.

Figure 4 represents the one-dimensional domain, used in presente work, in order to study the Burgers equation for
non-periodic boundary condition. The Ltotal is the all eulerian domain, which comprise by Lforce, Luseful, and Lcomp.
Lforce are forcing zone, where ’x’ are lagrangian points, Lcomp are the complementary domain, and Luseful is the useful
domain.

4. RESULTS

Figure 5 shows the initial condition and the Burgers equation solution at time π
8 [s], using grid with 64 points. At

Fig. 5a is the solution for the periodic boundary condition and Fig. 5b is the non-periodic solution.
In the Figure 5a can be observed the numerical differences. As expected, the approach using FVM with upwind

scheme, shows the results with more numerical diffusion and the results using central-difference approach is better than
previous but had numerical oscilation at the discontinuity region. The result that close better with the analytical solution
is the obtained by Fourier pseudospectral method .

Figure 6 the high accuracy of the spectral method for the discontinuos problem and periodic boundary conditions are
presented. This figure shows that increase the points of the FPM, the maximum error tend to 10−15, approaching the
collocation method obtained by Canuto et al. (2006).
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Figure 5. Reference solution of finite volume for 64 grid points. The solid line is the initial condition, the dash line is
the analytical solution at π8 [s] the triangule represents the solution of central-diference approach, the circle represents the
solution of upwind apporach, and the cross symbol is the pseudospectral solution. (a) Periodic domain, (b) Non periodic

domain.

Figure 6. Maximum error of Fourier pseudospectral method (dash-point line) and Collocation spectral method by Canuto
et al. (2006) (solid line)

The solution for the Burgers in a non periodic domain, is presented in Fig. 5b, with the 64 grid points and the c=4.0
[m/s]. To solve this problem using FPM was used the immersed boundary with directing forcing method, (Mariano, 2011).
At Fig. 5b represents the non-periodic solution for both methodologies in study. For the pseudospectral method (dash-dot
line) the Fig. 5b shows only useful domain Fig. 4.

Figure 7 is the spatial convergency of the both methodologies. At the Fig.( 7a) represents the convergency order using
the pseudospectral method, which was applied IBM at 1, 2 and 3 points on each side forcing zone domain (Lforce in Fig.
4).

Figure 7a can be seen that the improve of the points of aplicantion the IBM, the order of convergence tending to second
order and the accuracy is better. This is possible because when improve the number of points, ensures the derivated them.
At Fig. 7b confirm the approach that upwind scheme to first order and the central-difference approach is the second order.
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Figure 7. Reference the convergence order,the CFL= 0.001. (a) Pseudospectral method using IBM, (b) Finite Volume
method

5. CONCLUSION

The central-difference interpolation scheme used at the finite volume method, showed better that the upwind results. It
which shows high numerical dissipation Fig. 5. Therefore the central-difference interpolation scheme at the second order
maintain the convergency order of finite volume.

As the computations reported in this paper, it was possible conclude that Fourier spectral methods are well suited to
the calculation of problems with periodic boundary conditions. The spectral methods are better from this point of view
and call for higher-order time marching schemes. The IBM used to include the non-periodic boundary conditions in this
methodology, causes the decrease of accuracy, which is shows in Fig. 7a, second convergency order.
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