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Abstract. In this work we present a methodology to reconstruct rectangular sources in the transient heat conduction

equation model which is based on the minimization of the difference between the solutions of the model consistent with

the inverse problem Cauchy data in the boundary. The Nelder-Mead simplex direct search algorithm starting with random

initial values is used to reconstruct the given rectangular source by using only the Cauchy data in the boundary determined

with a different solution of the direct problem.
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1. INTRODUCTION

Stationary and transient source reconstruction from Cauchy boundary data has been investigate in previous works
(Roberty and Rainha (2010)) and (Roberty and Rainha (2011)). In this work we present a new methodology based on
Green’s and Neumann functions for the first and the second initial boundary value problem (Friedman, 1964) for the
second order parabolic partial differential equation related with the heat equation. Source reconstruction with various
frequencies was investigated in (Alves et al. (2009)). and with the methods of fundamental solution in (Alves et al.

(2008)).

2. DIRECT TRANSIENT HEAT EQUATION PROBLEM

By Ω ⊂ <d, d = 1, 2, 3 we denote a bounded domain with smooth boundary Γ = ∂Ω, which means that it will
be locally parametrized with C∞ functions and that Ω is locally on one side of its connected boundary. In the spatial
surface Γ the normal ν is defined almost everywhere and the induced measure on the surface is denoted by dσ. In the
time-space <d+1, we consider the time interval I := (0, T ), T > 0 to form the bounded cylinder Q := I × Ω, whose
lateral time-space surface is Σ := I × Γ. A section in this cylinder is Ωt := {t} × Ω, t ∈ I , and the complete cylinder
boundary is

∂Q = Σ ∪ Ω0 ∪ ΩT ,

where Ω0 and ΩT are, respectively, the cylinders’ bottom and top sections. At cylinder top and bottom there exist the
corners Γ0 = Ω0 ∩ Σ ⊂ <d−1 and ΓT = ΩT ∩ Σ ⊂ <d−1, respectively.

The direct transient heat source initial boundary value problem consists in to find u(t, x), with (t, x) ∈ Q, given a
boundary input g(t, x) with (t, x) ∈ Σ, an initial input u0(x), with (t, x) ∈ Ω0, and a source distribution f(t, x) with
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(t, x) ∈ Q that verifies the problem :

(Pu0,g,f )


1
α∂tu−∆u = f in Q,
u = u0 in Ω0,

u = g on Σ.

(1)

and Dirichlet data compatibility condition, u0 = g at the time-space cylinder corner Γ0.
The following Hilbert space norm:

||v||L2(I;X) = (

∫
I

||v||2Xdt)
1
2 <∞.

is appropriated to control errors in the space time cylinder. Simplification for the stationary case can be obtaining by
considering time independent fields.

3. THE INVERSE SOURCE PROBLEM

The inverse source problem that we address consists in the recovery of the source f , knowing the Extended Dirichlet
to Neumann map, which is a combination of the Cauchy data including values of the temperature field at the space time
boundary and values of the heat flux at the space boundary (Roberty and Rainha (2011)). It is proved that only one set of
Cauchy data contains all information to be used in source reconstruction and a reciprocity gap based formulation permit
us to present a reconstruction methodology which is independent of the direct problem. We alternatively can formulate
the inverse problem in a way which is dependent on the direct problem and that suggests another methodology, based on
a minimization problem. That is, the inverse problem will be: To find the temperature and the source distribution u(t, x)

and f(t, x) with (t, x) ∈ Q, given a boundary input for the temperature field g(t, x) and for the normal derivative gν(t, x)

with (t, x) ∈ Σ, an initial input u0(x) with (t, x) ∈ Ω0 with (t, x) ∈ Q that verifies the problem :

(IPu0,g,gν )


1
α∂tu−∆u = f in Q,
u = u0 in Ω0,

u = g and uν = gν on Σ.

(2)

3.1 Optimization problem

Since there exists an over determination of Cauchy data in the space boundary, we can partition (2) in two well posed
direct problems, in a way that is similar to the method proposed by (Kohn and Vogelius (1987)) for eletrical impedance
tomography problems and has been recently investigated by (Machado (2012)) in the context of topological derivative
application to inverse potential problems. For this, let us split the boundary in two disjoint parts, Γ = Γ1 ∪ Γ2 with
Γ1 ∩ Γ2 = ∅. Then we can alternate the Dirichlet and the Neumann data over these two parts of the boundary, in which
two well posed problems can be used to try different sources in order to verify if the source is compatible with the Cauchy
data of the inverse problem. Giving a source guess f(t, x), the auxiliary direct transient heat source initial boundary value
problem consists in to find u(l)(t, x), for l = 1, 2, with (t, x) ∈ Q, given a boundary Cauchy input (g(t, x), gν(t, x)), with
(t, x) ∈ Σ, an initial input u0(x), with (t, x) ∈ Ω0, with (t, x) ∈ Q that verifies the problem :

(P
(l)
u0,g,gν ,f

)


1
α∂tu

(l) −∆u(l) = f in Q,
u(l) = u0 in Ω0,

u(l)|Γl = g|Γl and u(l)
ν |Γ¬l = gν |Γ¬l on Σ.

(3)

Obviously, it is quite simple to understand that when the source is consistent with the Cauchy pair characterizing the
inverse problem, the difference of the two solutions will be equal if data do not have noise, u(1)(t, x, f) ≈ u(2)(t, x, f).
Based on this, we formulate the following Optimization Problem based on the following discrepancy functional:
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To find f(t, x) such that

f(t, x) = arg inf{||u(1)(t , x , h)− u(2)(t , x , h)||L2 (I ;X ), h ∈ Cf } (4)

The a priori information related with the class of functions Cf in with the search must be done cannot be avoided,
since the central question in the inverse source problem is non uniqueness. Meanwhile, it has being proved (Isakov (1990))
that the class of characteristic sources with known intensities presents uniqueness. In this work, in order to introduce an
analytic solution to the direct problem, we will restrict our class to rectangular characteristic source with unitary intensity.

3.2 Analytical formulation for the auxiliary problems

Let us consider the time space domain (0, T )× Ω := (0, T )×
∏d
i=1{−1 < xi < +1}. It has space boundary

∂Ω = Γ =

d∏
i=1

Γ−i ∪ Γ+
i :=

d∏
i=1

{−1 = xi} ∪ {xi = +1} (5)

over which we proceed like (Haji-Sheikh and Beck (1994)) to define the following spatial auxiliary eigenvalue problem

−∆vλ = λvλ. (6)

Different sets of spatial (eigenvalue, eigenfunctions) pairs (λ, vλ) are consistent with this box domain

1. For all i = 1, ..., d ; vλ|xi=−1 = 0 and ∂vλ
∂xi
|xi=+1 = 0 if

vλ(x1, ..., xd) =

d∏
i=1

sin(
2ki + 1

4
π(xi + 1)) with λ =

d∑
i=1

(
2ki + 1

4
π)2; (7)

2. for all i = 1, ..., d ; ∂vλ∂xi
|xi=−1 = 0 and vλ|xi=+1 = 0 if

vλ(x1, ..., xd) =

d∏
i=1

sin(
2ki + 1

4
π(xi − 1)) with λ =

d∑
i=1

(
2ki + 1

4
π)2; (8)

3. for all i = 1, ..., d ; vλ|xi=±1 = 0 if

vλ(x1, ..., xd) =

d∏
i=1

sin(
kiπ

2
(xi + 1)) with λ =

d∑
i=1

(
kiπ

2
)2. (9)

where ki is a multiindex. An straightforward calculation based on the second Green’s formula shows that the analytical
solution to the problem

−∆u+ κ2u+
∂u

∂t
= f(t, x) ∈ Q (10)

with arbitrary but consistent boundary conditions satisfies the equation:

u(t, x) =
∑
λ

uλ(t)vλ(x1, ..., xd) (11)
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where the transient spatial projection associated with the spatial basis is

uλ(t, x) = uλ(0, x) exp(−(λ+ κ2)t) +

∫ t

0

(fλ(τ, x) + Jλ(τ, x) exp(−(λ+ κ2)(t− τ))dτ ; (12)

the transient source projection is

fλ(t, x) =

∫
Ω

f(t, x)vλ(t, x)dx (13)

and the boundary terms are

Jλ(t, x) =

d∑
i=1

{−
∫

Γ−i

[vλ
∂u

∂xi
− u∂vλ

∂xi
]xi=−1

dx

dxi
+

∫
Γ+
i

[vλ
∂u

∂xi
− u∂vλ

∂xi
]xi=+1

dx

dxi
}. (14)

The spatial basis given by (7), (8) and (9) can be used to construct the three solutions different solutions for the
transient heat equation

1. The auxiliary problem (1)

(P
(1)

u0,g−,g
+
ν ,f

)


1
α∂tu

(l) −∆u(l) = f in Q,
u(1) = u0 in Ω0,

u(1)(t, .)|Γ−i = g−i and u(1)
ν |Γ+

i
= g+

νi .

(15)

2. The auxiliary problem (2)

(P
(2)

u0,g+,g
−
ν ,f

)


1
α∂tu

(2) −∆u(2) = f in Q,
u(2) = u0 in Ω0,

u(2)(t, .)|Γ+
i

= g+
i and u(2)

ν |Γ−i = g−νi .

(16)

3. The auxiliary problem for synthetic data generation

(P
(2)

u0,g+,g
−
ν ,f

)


1
α∂tu

(2) −∆u(2) = f in Q,
u(2) = u0 in Ω0,

u(2)(t, .)|Γ+
i

= g+
i and u(2)|Γ−i = g−

i
.

(17)

by direct substitution of the respective boundaries values in the boundary term (14). Note that if data are consistent with
the same source problem, that is the Cauchy data

C = {
(
g−i , g

+
i , g

−
νi, g

+
νi

)
, i = 1, ..., d} (18)

are the same in the three problems, then the source term is the same. In this work we are using the problem (3) to
generates the data to be used in the source reconstruction problem. Problems (1) and (2) are using to define the discrepancy
functional (4).

3.3 The Nelder-Mead Simplex Algorithm

The discrepancy functional (4) is a non-linear functional of the source function f . The minimization problem can be
solved with different optimization algorithms, but the cost of determining derivatives with respect to parameters defining
the source makes the utilization of gradient based algorithms more difficult to implement than those algorithms based
only on functional evaluation. Such is the case of the Nelder-Mead method introduced by (Lagarias et al. (1998)). This
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algorithm attempt only to minimizes the scalar-value non linear discrepancy function of characteristic sources parameters
that can be obtained from truncated Fourier series solutions of problems (1) and (2). It falls in the general class of direct
search methods. A non degenerated simplex with the same dimension of the number of parameters to be determined is
established at each step. Each iteration begins with this simplex, which is the hull of n+ 1 vertices in the n dimensional
parameters space.The Nelder-Mead simplex algorithm is based on four operations:

1 -Reflection with algorithm parameter ρ > 0;

2 -Expansion with algorithm parameter χ > 1 ;

3 -Contraction with algorithm parameter 0 < γ < 1:

[i] outside ;

[ii] inside ;

4 -Shrink with algorithm parameter 0 < σ < 1.

Steps [1]-[3] are used to create a new simplex by attempting to replace the vertex with the highest functional values with a
smaller. If this attempt is unsuccessful, then the current simplex is reduced in size using step [4], and the entire procedure
is repeated. We adopted here the universal typical algorithm parameters values: ρ = 1, χ = 2, γ = 1

2 and σ = 1
2 .

4. RESULTS FOR THE TWO DIMENSIONAL STATIONARY CASE

We have implemented the minimization of the discrepancy functional (4) and reconstructed the exact source as given
in Tab. 1. The Nelder-Mead simplex direct search algorithm has been started with random generated data. Experimental
data has been synthetically produced by using the analytical solution of the Dirichlet problem obtained with basis given
by (9). Problems l = 1 and l = 2 in the optimization functional are obtained with basis (7) and (8), respectively. In this
example the Fourier series has been truncated with 100 and the number of collocations points is 40. Figure (1) shows

Table 1. Characteristic source dimensions

Type of source a1 b1 a2 b2
Exact source -0.5000 +0.5000 -0.5000 +0.5000
Random source -0.4074 +0.0635 -0.4529 +0.4576
Recosntructed 80 iter -0.4975 +0.0962 -0.7446 +0.9357
Reconstructed 286 iter -0.4970 +0.4970 -0.4968 +0.4968

the solution of the Dirichelet problem and its Neumann data use in the mixed problems (1) and (2). The discrepancy
functional value for this model, with exact source parameters, is 4.2047e − 006. Convergence is quite satisfactory when
the Discrepancy become close to this value for 286 iterations in the Nelder-Mead algorithm.

Figure (2) shows the exact source and the random generated source used to start the algorithm. Figure (3) shows two
reconstructions. The first with insufficient number of algorithm iterations but the second with a satisfactory reconstruction
obtained with more iterations.

4.1 The case of sources with non connected support

A second experiment has been implemented for a characteristic source with a non connected support as shown in
Fig.(4). Contrary of the characteristic source with connected support, for this class of source it is not known a mathemati-
cal proof of an uniqueness theorem for the reconstruction from Cauchy boundary data. Here, we have doubled the number
of terms in the Fourier series, that is, 200 and also doubled the number of collocation points, 80. The reconstruction is
conducted under the information that the source support is bi connected and initial values are randomized as shown in
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Figure 1. Homogeneous dirichlet model solution with boundary data.
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Figure 2. Exact and Random generate source support.

Tab.(2). The discrepancy for the exact source data is 9.1945e − 007. The algorithm stops of improve the reconstruction
at discrepancy value 1.6126e− 006. Results are not so good as they were in the connected source case, but it is improved
by the algorithm until the numerical precision of the discrepancy function is reached. After this limit value, no further
improvement can be reached. From experiment, due to the presence of numerical noise, it is not possible to conclude if
there exist only one local minimum of discrepancy function, related with the exact source data, or there exists others bi
connected sources that satisfies the same Cauchy data pair. In both case, of course, we can conclude that if there exist
more than one source, they are very close.

5. CONCLUSIONS

The present methodology gives an alternative way to determine stationary and transient sources from over determi-
nation of boundary conditions in the heat equation model. It is based on the minimization of the difference between
two direct well posed problems. Analytical solutions using Fourier series are used in the evaluation of the discrepancy
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Figure 3. Reconstructed source for 80 and 286 iterations.

Table 2. Characteristic biconnected source dimensions

Type of source a1 b1 a2 b2 a3 b3 a4 b4 Discrepancy
Exact source -0.7000 -0.1000 -0.7000 -0.1000 0.7000 +0.1000 0.7000 +0.1000 9.1945 e-007
Random source -0.7156 -0.0689 -0.6169 -0.1929 0.7284 +0.1698 0.7919 +0.1868 3.9987 e-005
Reconstructed 82 iter -0.7759 -0.0949 -0.6867 -0.1693 0.7359 +0.1774 0.7575 +0.1792 4.0551 e-006
Reconstructed 675 iter -0.7588 -0.0949 -0.6867 -0.1931 0.6917 +0.0520 0.6715 +0.0698 1.6126 e-006
Reconstructed 1335 iter -0.7587 -0.0949 -0.6867 -0.1931 0.6919 +0.0520 0.6730 +0.0697 1.6106 e-006
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Figure 4. Exact and Random generate source biconnected support.

functional with guessed source parameters. We had used the analytical solution of the direct problems for rectangular
geometry, but the methodology can also be implemented for arbitrary geometry if direct problems are solved with numer-
ical solvers based on finite element method. The adopted Nelder-Mead simplex algorithm avoid the necessity of compute
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Figure 5. Reconstructed biconnected source for 82 and 675 iterations.

derivatives, which is adequate to the necessity of iterate a huge numbers of solutions of the direct problems. Results show
that this is a new way to reconstruct sources for Cauchy boundary data. For characteristic sources with simply connected
support, the reconstruction is very good, and in the non connected case, we arrive very close to one positive reconstruction.
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