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Abstract. Water injection into oil formations has a very wide application in the oil industry. The injection of water has
as main objective: to maintain formation pressure and provide the recovery of oil by water displacement. This work
compares two different theoretical formulations used in reservoir simulations. One is the saturation differential equation
and the other is the mixture theory equation applied to fluid flow in porous media. The saturation differential equation is
widely used in reservoir simulations. This equation is found when Darcy’s Law for each phase is applied in the continuity
equation for each phase. However, there is another theoretical approach for multiphase flows in porous media. Mixture
theory allows a local description of the flow in a porous medium, supported by a thermodynamically consistent theory
which generalizes the classical continuum mechanics. This article compares the results obtained by the equation based
on the mixture theory with the saturation differential equation. To solve the saturation equation the Generalized Integral
Transform Technique (GITT) was employed. The GITT has been successfully employed in various petroleum reservoir
simulation problems. The numerical method for the solution of mixture theory was obtained using advanced, commercial,
general-purpose CFD code: FLUENT.
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1. NOMENCLATURE

x, y, z Coordinates
Sw, So Water and oil fraction
vsw, vso Water and oil superficial velocity
mf Interaction force
vst Total superficial velocity
Tf Partial stress tensor for fluid
K Absolute permeability
vi Constituent velocity vector
kw, ko Water and oil relative permeability
ρi Constituent Mass Density
µw, µo Water and oil viscosities
g Body force
pw, po Water and oil pressures
ρw, ρo Water and oil densities
fw Fractional flow function
φ Porosity
Sw, So Water and oil saturations

SF Filter function
SH Filtered potential
Swi Connate water saturation
Swo Residual oil saturation
F (x) Source term of the equation
F̄ (x) Transformed source term
N Norm
Ψ, λ Eigenfunctions and eigenvalues
Swo Residual oil saturation
H Diffusion parameter
SH Transformed filtered potential
a, b Linearization coefficients
A, B, C, D Transformed equation coefficients

Subscripts
i, k, q GITT indexes
i, j FVM indexes
imax, imax Grid divisions for FVM

2. INTRODUCTION

Waterflooding is dominant among fluid injection methods and is without question responsible for the current high level
of producing rate and reserves. Its popularity is accounted for by (1) the general availability of water, (2) the relative ease
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with which water is injected, due to the hydraulic head it possesses in the injection well (3) the ability with which water
spreads through an oil-bearing formation and (4) water’s efficiency in diplacing oil.

The first approach to study two-phase flow in porous media made in this article is based on the Darcy’s Law. The
saturation differential equation is widely used in reservoir simulations. This equation is nothing more than a rearrangement
of the Black Oil model. To solve this first approach the Generalized Integral Transform Technique was employed. The
Generalized Integral Transform Technique (GITT) (Cotta, 1993) deals with expansions of the sought solution in terms
of bases of infinite orthogonal eigenfunctions, maintaining the solution process always within a continuum domain. The
transformation of the original problem results in a coupled system, generally composed of ordinary differential equations,
which can be readily solved by well established numerical routines that allow precision control. Nevertheless, as the
infinite series must be truncated so that any application can be made, a truncation error is involved.

Another approach that can be used to understand the fluid flow in porous media is based on continuum theory of
mixtures, a generalization of continuum mechanics. The importance of the study of mixtures was recognized long ago
and mathematical models have been developed to describe the flow of such mixtures. The pioneering works of Fick (Fick,
1976) and Darcy (Darcy, 1856) deserve special mention. These early attempts were aimed at describing the diffusion or
flow of one constituent of the mixture through another. While the prediction of Darcy’s Law provide good agreement in
many physical situations, large departures from the predictions of these laws are also possible in practice. Additionally,
Darcy’s Law is quite inadequate in proving some important information on diffusion processes. For instance, this law
cannot predict the stresses or strain in the solid, or the flow field of the fluid. Such information is critical in many
problems where the solid may fracture or rupture due to the stress or strain induced in them.

The basic premise of the mixture theory is that the space occupied by a mixture can be considered as being occupied
co-jointly by the various constituents of the mixtures, each considered as a continuum in its own right. Thus, at each point
in the space occupied by the mixture, there will be a particle belonging to each of the constituents. The theory of mixtures
allows for the interconversion of mass between the various constituents. Balance laws for mass, linear momentum, angular
momentum and energy take into account contributions of any of these quantities with regard to a particular constituent
due to the influence of the other constituents. An appropriete thermomechanical setting can also be provided within which
to study mixtures that take into account the basic laws of thermomechanics.

Some of the most recent applications of the Generalized Integral Transform Technique include, convective heat trans-
fer in flows within wavy walls (Castellões et al., 2010), hyperbolic heat conduction problems (Monteiro et al., 2009),
conjugated conduction-convection problems (Naveira et al., 2009), transient diffusion in heterogeneous media (Naveira-
Cotta et al., 2009), heat and mass transfer in adsorption (Hirata et al., 2009), atmospheric pollutant dispersion (Almeida
et al., 2008) and dispersion in rivers and channels (de Barros and Cotta, 2007), heat transfer in Magnetohydrodynamics
(MHD) (Lima et al., 2007), applications to irregular geometries (Sphaier and Cotta, 2002), solution of the Navier-Stokes
equations (de Lima et al., 2007) and the boundary layer equations (Paz et al., 2007), stability analysis in natural con-
vection (de B. Alves et al., 2002), among others. One particularly interesting study was that proposed in (Sphaier et al.,
2011), in which a unified algorithm (termed the UNIT algorithm) for handling virtually any convection-diffusion problem
was introduced. Among porous media problems interesting applications of the GITT in can be seen in Chongxuan Liu
and Ball (2000); R. M. Cotta and Quaresma (2000); J.S. Pérez Guerrero a (2010).

The goal of this study is to compare the use of the Darcy law with the theory of mixture. The problem chosen is of
great importance to the petroleum industry. the displacement of oil by water is the simplest form of oil recovery.

3. PROBLEM FORMULATION

Darcy’s Law is extended to multiphase flow by postulating that these same phase pressures are involved in causing
each fluid to flow and neglecting gravity effects (Peaceman, 1977):

vsw = −K kw
µw
∇pw, vso = −K ko

µo
∇po (1)

here vo, and vw are the superficial velocities for the oil and water, respectively, µo and µw are the respective viscosities.
kn and kw are the relative permeabilities for flow for each of the two fluids and K is the absolute permeability of the
medium.

The mass conservation for a porous medium is given by (Nield and Bejan, 2006):

∂ (φρwSw)

∂t
+∇ · (ρwvsw) = 0,

∂ (φρoSo)

∂t
+∇ · (ρovso) = 0 (2)

for incompressible fluids, neglecting the capillary effect, and considering the porosity constant in time. The saturation
differential equation is given by:

φ
∂Sw(x, t)

∂t
+∇ · (vst fw(Sw)) = 0 (3)
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where vst is the total velocity:

vst = vsw + vso (4)

or in quasilinear and one dimensional form:

φ
∂Sw(x, t)

∂t
+ ust

dfw(Sw)

dSw

∂Sw(x, t)

∂x
= 0 (5)

The above equation, known as the "Buckley-Leverett Equation" (Buckley and Leverett, 1942) is a nonlinear hyperbolic
transport equation, where the coefficient multiplying the term ∂Sw(x, t)/∂x is a nonlinear function of Sw. This term has
particularly interesting properties and allow the investigation of a series of properties of more complex flows being widely
studied in the literature (Helmig, 1997; Fanchi, 2001).

4. MIXTURE THEORY

By the mixture theory, the mass balance may be written as:

∂ρi
∂t

+∇ · (ρivi) = 0 (6)

in which ρi is the ith constituent mass density in mixture, and vi is the ith constituent velocity in mixture. The balance of
linear momentum is given by:

∂ (ρivi)
∂t

+∇ · (ρivivi) = ∇ · (Ti) + ρigi + mi (7)

which Ti is the partial stress tensor associated with the ith constituent, gi is a body force per unit mass acting on the ith
constituent, and mi is an interaction force per unit volume acting on the ith constituent due to its interaction with the other
constituents of the mixture.

In multiphase flows, since porosity is a parameter representing the volume blockage in porous media, all the phases
in a multiphase flow system share the same porosity. Consequently, for the general porous-media modeling formulation,
physical laws and governing equations are applied to the corresponding phase. The mass conservation for both phases is
given by:

∂ (φαwρw)

∂t
+∇ · (φρwαwvw) = 0,

∂ (φαoρo)

∂t
+∇ · (φρoαovo) = 0 (8)

The balance of linear momentum for water is given by:

∂ (ραwφvw)

∂t
+∇ · (ρwαwφvwvw) = −φαw∇p+ φ2αwµ∇2vw −

µφ2αwvw
Kkw

+ φαwρwg (9)

The balance of linear momentum for oil is written as:

∂ (ραoφvo)
∂t

+∇ · (ρoαoφvovo) = −φαo∇p+ φ2αoµ∇2vo −
µφ2αovo
Kko

+ φαoρog (10)

This physical velocity formulation has been implemented in an advanced, commercial, general-purpose CFD code, FLU-
ENT .

5. PROBLEM FORMULATION

The studied problem is that of displacement of oil by water in porous media. The incompressible laminar biphase
flow within a porous media is considered by two different theories. As the case study is one-dimensional, the solutions
can be compared with the analytical solution of the best known two phase porous medium equation: the Buckley-Leverett
equation.

A uniform mesh with one hundred elements was used in the FLUENT simulation (mixture theory). The time derivative
was discretized using backward differences and first-order implicit temporal discretization was used. The advantage of
the fully implicit scheme is that it is unconditionally stable with respect to time step size. The spatial discretization was
computed by the Green-Gauss Cell-Based method for gradients and First-Order Upwind Scheme for interpolating faces
values in convection terms. SIMPLE was the pressure velocity coupling segregated algorithm chosen.
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The interaction between the phases is given by the relative permeability curve. In this article two relative permeability
curves are considered for comparison between the different approaches. A general form for these curves can be given by:

kw(Sw) =
Krwmax (Sw − Swi)nw

(1− Sor − Swi)
, ko(Sw) =

Kromax (1− Sor − Sw)no

(1− Sor − Swi)
(11)

Another important function is the fractional flow. This function is responsible for the problem non-linearity in the satura-
tion differential equation.

fw(Sw) =

kw(Sw)
µw

kw(Sw)
µw

+ ko(Sw)
µo

(12)

For all cases studied, the total velocity into the saturation differential equation is ust = 1.0× 10−5.

5.1 Linear Permeability Curve

The simplest case of relative permeability curves in reservoir simulation was studied. The linear relative permeability
curves and the data used in this case are shown in table 1:

Table 1. Data for Simulation

Properties Values Properties Values
Krwmax 1 L 1 m
Kromax 1 φ 0.2
Sor 0 K 4.737× 10−9 m2

Swi 0 µw 0.01 kg/ms
no, nw 1 µo 0.02 kg/ms

The relative permeability curves and the fractional flow function for this case is showed in Fig. 1.

(a) Relative Permeability Curves (b) Fractional Flow Function

Figure 1. Linear Permeability Curves

The boundary conditions for the present case are described below:

• For the saturation differential equation

Sw(0, t) = 1,

(
∂Sw
∂x

)
x=L

= 0, for t ≥ 0, (13)

• For the Mixture Theory

Inlet velocity v(0, t) = 1.0× 10−5 and symmetry condition at x = L
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The initial conditions for this cases are given by:

• For the saturation differential equation

Sw(x, 0) = Swi = 0, (14)

• For the Mixture Theory

Inlet velocity vw(x, 0) = 0 and αw(x, 0) = Swi = 0

5.2 Non-Linear Permeability Curve

For the second case, a model closer to reality was made. Second degree polynomials were used in relative permeability
curves. This case of relative permeability curves is more common in reservoir simulation. The polynomial relative
permeability curves and the data used in this case are shown in table 2 and in Fig. 2:

Table 2. Data for Simulation

Properties Values Properties Values
Krwmax 1 L 1 m
Kromax 1 φ 0.2
Sor 0 K 4.737× 10−9 m2

Swi 0 µw 0.01 kg/ms
no, nw 2 µo 0.02 kg/ms

The relative permeability curves and the fractional flow function for this case are showed in Fig. 2. This form of the
fractional flow function is frequently found in the literature. It is intuitive to see by the charts below that the presence of
more water in porous media will result in greater facility of water flow in the domain.

(a) Relative Permeability Curves (b) Fractional Flow Function

Figure 2. Non Linear Permeability Curve

The boundary conditions for the present case are given by:

• For the saturation differential equation

Sw(0, t) = 0.73,

(
∂Sw
∂x

)
x=L

= 0, in t ≥ 0, (15)

• For the Mixture Theory

Inlet velocity v(0, t) = 1.0× 10−5 and symmetry condition in x = L
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The initial conditions for this cases are given by:

• For the saturation differential equation

Sw(x, 0) = Swi = 0.16, (16)

• For the Mixture Theory

Inlet velocity vw(x, 0) = 0 and αw(x, 0) = Swi = 0.16

6. INTEGRAL TRANSFORM SOLUTION

The integral transform technique consists on seeking an eigenfunction expansion solution based on an integral trans-
form pair. In order to obtain this eigenfunction expansion, a diffusion term is introduced to the equation, in which the H
parameter will be considered large.

φ
∂Sw(x, t)

∂t
+ ut

dfw(Sw)

dSw

∂Sw(x, t)

∂x
− 1

H

∂2Sw
∂x2

= 0, (17a)

Sw(0, t) = 1− Sor, Sw(1, t) = Swirr, Sw(x, 0) = Swirr (17b)

A traditional procedure in GITT solutions is the elimination of the nonhomogeneous boundary conditions with an
introduction of a filter function.

Sw(x, t) = SH(x, t) + SF (x) (18)

which, for this problem, the filter function is chosen to be:

SF (x) = (Swirr − Swo)x+ Swo (19)

The filter function separation provides the following filtered equation:

∂SH
∂t

+ f ′w(Sw)

(
∂SH
∂x

+
∂SF
∂x

)
− 1

H

∂2SH
∂x2

= F (x), (20a)

SH(0, t) = 0, SH(1, t) = 0, SH(x, 0) = Swirr − SF (x) (20b)

where

F (x) =
1

H

∂2SF
∂x2

(21)

The eigenfunction expansion solution is based the following transformation pair:

Inversion → SH(x, t) =

∞∑
k=1

SHk(t) Ψk(x)

Nk
, (22)

Transform → SHk(t) =

∫ 1

0

SH(x, t) Ψk(x) dx (23)

where Ψx(x) are orthogonal solutions of a Sturm-Liouville eigenvalue problem. Traditionally, the one-dimensional
Helmholtz problem is chosen:

Ψ′′(x) + λ2 Ψ(x) = 0, Ψ(0) = 0, Ψ(1) = 0 (24a)

The norms of the eigenfunction (Ψk) are given by:

Nk =

∫ 1

0

Ψ2
k(x) dx (25)

These eigenvalue problems lead to infinite nontrivial solutions as shown bellow:

Ψk(x) = sin(λk x), λk = π k where k = 1, 2, 3, ... (26)
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Using the solution arising from the previous eigenproblem, the transformation of the original problem is carried-out
by operating equation (20a) with the integral operator

∫ 1

0
•ψn(x) dx, employing the associated boundary conditions and

eigenproblem information:
The problem is transformed using the transformation operator defined in eq. (23). Almost all the terms of the equa-

tion can be directly transformed remaining two terms on the right hand side of the equation, which cannot be directly
transformed.

dSHk
dt

+
λ2k
H
SHk − F̄k = −

∫ 1

0

Ψk f
′
w

∂SF
∂x

dx−
∫ 1

0

Ψk f
′
w

∂SH
∂x

dx, where F̄k =

∫ 1

0

F Ψk dx (27)

In order to transform these two terms, a linear approximation of the function f ′w inside a subdomain (xq−1 < x < xq),
in a manner that:∫ 1

0

f ′w g(SH , x) dx =

qmax∑
q=1

∫ xq

xq−1

[aq(t)x+ bq(t)] g(SH , x) dx (28)

where the coefficients of the linearization are:

aq(t) =
fw
′
q − fw

′
q−1

xq − xq−1
, bq(t) =

xq fw
′
q−1 − xq−1 fw

′
q

xq − xq−1
(29)

Applying this linearization to the equation (27), the following transformed system is obtained:

dSHk
dt

+
λ2k
H
SHk −

F̄k
H

= −
qmax∑
q=1

(fw
′
q − fw

′
q−1)Aqk −

qmax∑
q=1

(xq fw
′
q−1 − xq−1 fw

′
q)Bqk

−
qmax∑
q=1

∞∑
i=1

(fw
′
q − fw

′
q−1)Ciqk SHi −

qmax∑
q=1

∞∑
i=1

(xq fw
′
q−1 − xq−1 fw

′
q)Diqk SHi (30)

where

fw
′
q = fw

′
q(Sw, xq) = fw

′
q(SH + SF , xq) = fw

′
q

( ∞∑
k=1

SHk Ψk

Nk
+ SF , xq

)
, (31)

fw
′
q−1 = fw

′
q−1(Sw, xq−1) = fw

′
q−1(SH + SF , xq−1) = fw

′
q−1

( ∞∑
k=1

SHk Ψk

Nk
+ SF , xq−1

)
, (32)

Aqk =
1

xq − xq−1

∫ xq

xq−1

x
dSF
dx

Ψk dx, Bqk =
1

xq − xq−1

∫ xq

xq−1

dSF
dx

Ψk dx, (33)

Ciqk =
1

Ni(xq − xq−1)

∫ xq

xq−1

xΨk Ψ′i dx, Diqk =
1

Ni(xq − xq−1)

∫ xq

xq−1

Ψk Ψ′i dx (34)

The transformation of the initial condition leads to:

SHk(0) =

∫ 1

0

(Swirr − SF ) Ψk(x) dx (35)

The solution of the transformed potentials is obtained by truncating the infinite system representation (30) to a finite
order and employing a commercially or publicly available dedicated ODE solver. In this work, the UNIT algorithm
(Sphaier et al., 2011), implemented on the Mathematica software which uses the NDSolve routine was employed.

7. RESULTS AND DISCUSSION

The results for both cases, linear and nonlinear relative permeabilities curves, will be presented in order to compare
the two theories, as well as to show the GITT being applied in solving problems of the petroleum industry.

7.1 Results for Linear Permeability Curve

Figures 3 and 4 show the comparison between GITT, FLUENT and the analytical approach. As noted, the numerical
results can reproduce the saturation front behavior. It can be noticed that the red curves have a smother behavior due to
the FLUENT upwind approach.
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(a) Dimensionless Time = 0.1 (b) Dimensionless Time = 0.2

Figure 3. Results for Linear Permeability Curves

(a) Dimensionless Time = 0.3 (b) Dimensionless Time = 0.4

Figure 4. Results for Linear Permeability Curves

Small differences were observed between the coarse meshes and analytical solution. A mesh study was made, but as
the paper main objective is to compare the theories, only the best case is presented. All the numerical results converged
on the exact solution as the mesh is refined.

The injected water provides two recovery mechanisms: the oil that is ahead of the invaded zone is being pushed in a
mechanism similar to a plug flow and in the invaded zone, the oil is being displaced by viscous effects with water. As
greater is the saturation shock front saturation, the better will be the displacement efficiency.

7.2 Results for Non Linear Permeability Curve

Figures 5 and 6 display the results for the non linear permeability case. The curves show the the saturation profile
along the domain. The same dimensionless are shown in order to compare the results found analytically, the saturation
differential equation by GITT and finite volumes methods for the theory of mixture.

It can be seen from the results, that the manner in which the water displaces the oil is completely dependent on the
type of relative permeability curve.

Just as the linear case, the numerical results can reproduce the behavior of the saturation front. A mesh study also was
made for this case and only the best case is presented here. For the FLUENT solution using the mixture theory was used
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(a) Dimensionless Time = 0.1 (b) Dimensionless Time = 0.2

Figure 5. Results for Non Linear Permeability Curves

(a) Dimensionless Time = 0.3 (b) Dimensionless Time = 0.4

Figure 6. Results for Non Linear Permeability Curves

a mesh with one hundred elements and for the GITT solution the infinite series was truncated in seventy-five terms.

8. CONCLUSIONS

This paper provided a comparison between two different theoretical formulations used in reservoir simulations. The
saturation differential equation and the mixture theory were used to solve the recovery of oil by water displacement in a
one dimensional case.

The results of both theories are compared with the analytical solution of the best known two phase porous medium
equation: the Buckley-Leverett equation. The analytical solution of the Buckley-Leverett equation was obtained following
the classical procedures presented in the literature (Greenkorn, 1983; Lake, 1989).

In order to solve the saturation equation the Generalized Integral Transform Technique was employed. In the case of
mixture theory, an advanced, commercial, general-purpose CFD code, FLUENT were used in this work. As noted, the
numerical results can reproduce the behavior of the saturation front for both cases.

Finally, in order to study the displacement of oil by water, two relative permeability curves are presented. It can be
seen from the results, that the manner in which the water displaces the oil is completely dependent on the type of relative
permeability curve. Good results were found for the cases studied.
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