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Abstract. Numerical investigations on the characteristics of the flow around a pair of immovable circular cylinders 
arranged in tandem were carried out. A purely Lagrangian Vortex Method was associated with a Poisson equation for 
the pressure to calculate global as well as local quantities at a supercritical Reynolds number (Re=65,000). The 
dominant vortex shedding frequencies in the wake of two cylinders were measured simultaneously using two fixed 
points  placed behind each cylinder. A discontinuous jump on drag coefficient and Strouhal number was identified at a 
critical centre-to-centre distance between the cylinders; this behavior was found due to bi-stable nature of the gap 
flow. When the distance was larger than the critical spacing, the flow pattern was referred as co-shedding type, with 
both cylinders shedding vortices. For some pitch ratios there may be synchronization between the vortex shedding 
process and the vortex streets of the upstream and downstream cylinders, and the possible formation of a binary-vortex 
street behind downstream cylinder. A primary focus on the formation of binary-vortex street was analyzed in this study. 
 
Keywords: flow around two cylinders, in tandem, dominant vortex frequencies, wake interference, vortex method. 

 
1. INTRODUCTION 
 

The effects of the interference between bodies in close proximity to one another can change fundamental aspects of 
the flow, such as fluid forces, separation point, vortex shedding frequency and dynamics of vortices. In the case of bluff 
bodies, the fluid flow around circular-cylindrical structures have received much attention of researchers as a result of its 
relevance in a variety of industrial settings: offshore platforms, heat-exchangers, nuclear power plants, buildings, 
chimneys, and so on. In the literature, the type of interference between two cylinders configurations is called flow 
interference (Zdravkovich, 1987). The wake interference is a particular type of flow interference, in which one cylinder 
is partially or completely immersed in the wake of another cylinder. A second type of interference was classified as 
proximity interference, in which both cylinders are located close to one another, but neither is immersed in the wake of 
the other. The flow around pairs of immovable circular cylinders has been the starting point to understand these ones 
basic types of interference. There are several comprehensive reviews of the flow around two circular cylinders in 
different arrangements. In particular, Zdravkovich (1977) and Sumner (2010) presented approaches to understanding 
the fluid behaviour. Three categories of arrangements can be classified based on the angles (α) of the center connection 
line of the cylinders relative to the main stream direction: in tandem (α=0°), side by side (α=90°) and staggered 
(0°<α<90°). 

In this work, a particular type of arrangement has been investigated: two immovable circular cylinders of equal 
diameter arranged in-line and parallel to the main stream at a high Reynolds number. The flow patterns are sensitive to 
both Reynolds number (Re) and the centre-to-centre longitudinal pitch ratio (g/d), being d the cylinder diameter. The 
pioneer studies of the tandem arrangement were presented by Igarashi (1981, 1984), in which were identified eight 
different flow patterns for two tandem circular cylinders. In recent numerical works, Carmo et al. (2010a, 2010b) 
classified the flow around two circular cylinders at low Reynolds numbers (Re=50-500) in three main flow patterns: (i) 
SG (symmetric in the gap) observed at g/d=1.5; (ii) AG (alternating in the gap) observed at g/d=1.8 and 2.3 and (iii) 
WG (wake in the gap) observed at g/d=5. Their classification scheme was similar to that given by Xu and Zhou (2004) 
and Zhou and Yiu (2006). A Lagrangian mesh-free Vortex Method (Moraes, 2011) is used here to simulate the two-
dimensional, time dependent viscous incompressible flow around two circular cylinders in tandem arrangement. 
 
2. NUMERICAL METHOD 

 
Consider the viscous flow around two circular cylinders in tandem arrangement as shown in “Fig. 1”. The boundary 

S of the fluid domain is defined as S=S1 ∪ S2 ∪ S∞, being S1 and S2 the circular cylinder surfaces upstream and 

downstream, respectively and ∞S  the far away boundary (which can be viewed as ∞→+= 22 yxr ). In order to 
avoid possible interference, the two fixed points were used to determine vortex shedding frequencies, P(x,y) and Q(x,y), 
respectively in “Fig. 1”. Xu and Zhou (2004) used similar schematic arrangement for hot-wire measurements.    
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Figure 1. Schematic arrangement of two in-line cylinders. 
 
The dynamics of the fluid motion is studied in a more convenient way taking the curl of the Navier-Stokes 

equations to obtain the vorticity equation 
 

ω∇=ω∇⋅+
∂
ω∂ 2

Re
1

t
u                                                                                                                                                                (1) 

 
where ω(x, t) = ∇×u(x, t) represents the only non-zero component of the vorticity field for 2-D flow. Note that the 
pressure is absent from the formulation. An algorithm that splits the convective-diffusive operator of “Eq. (1)” is 

employed in accordance with Chorin (1973). The Reynolds number is defined as 
υ

d U
Re = , where υ the kinematic 

viscosity of fluid and d is the diameter cylinder; the dimensionless time is d/U. The Vortex Method proceeds by 
discretizing spatially the vorticity field using a cloud of elemental vortices, which are characterized by a distribution of 
vorticity, 

iσ
ς (commonly called the cutoff function), the circulation strength iΓ  and the core size iσ . Thus, the 

discretized vorticity is expressed by 
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where Z is the number of point vortices of the cloud used to simulate the vorticity field. The numerical analysis is conducted 
over a series of small discrete time steps Δt for each of which a discrete vortex element Γ(i) is shed from cylinders 
surfaces. The intensity Γ(i) of these newly generated vortices is determined using the no-slip condition on S1 and S2. NP 
flat source panels represent cylinders surfaces to ensure impermeability condition on S1 and S2 (Katz and Plotkin, 1991).  
It is assumed that the source strength per length is constant. The velocity field u is calculated at the location of 
elemental vortices in a typical Lagrangian description. The velocity induced by cylinders is calculated in the frame of 
reference (x,o,y), see Moraes (2011). The vortex-vortex interaction is obtained from the vorticity field by means of the 
Biot-Savart law. The convective motion of each vortex generated on the body surface is determined by integration of 
each vortex path equation using a first order Euler scheme. The diffusion of vorticity is taken care of using the random 
walk method (Lewis, 1999). 

Starting from the Navier-Stokes equations is obtained a Poisson equation for the pressure. This equation is solved 
through the following integral formulation (Shintani and Akamatsu, 1994) 
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where 1Η =  in the fluid domain, 0.5Η =  on the boundaries, Ξ  is a fundamental solution of the Laplace equation and 

ne  is the unit vector normal to the cylinders surface, S1 and S2. The drag and lift coefficients are obtained from pressure 
integration. 
 
3. RESULTS AND CONCLUSIONS 

 
The vortex code was validated simulating the flow around an isolated circular cylinder. This was done in order to 

determine the parameters associated with the numerical method, like: number of flat panels used to represent the 
circular cylinder (NP=300); position of detachment of the discrete vortices ( 0.0010=eps ); Lamb core size 
( 0.0010=0σ ); for more details see Moraes (2011). Each simulation was performed up to 1,600 time steps with a value 
of 0.05Δt =  for dimensionless time step. “Table 1” and “Table 2” present comparisons of present simulation with 
experimental results from Alam et al.( 2003). Experiments were conducted in a low-speed, close-circuit wind tunnel 
with a test section of 0.6 m height, 0.4 m width, and 5.4 m length. The level of turbulence was 0.19%. The geometric 
blockage ratio and aspect ratio at test section were 8.1% and 8.2%, respectively. The experimental results were not 
corrected or the effects of wind-tunnel blockage.  

 
Table 5.1 - Comparison between numerical and experimental results for drag coefficient, Re =6,5×104 

 
Downstream Cylinder Upstream Cylinder  

Case 
 

g/d 
+
DC  ∗

DC  
+
DC  ∗

DC  

1 1,1 1,0953 0,9112 −0,5697 −0,0427 

2 1,5 - 0,9095 −0,3884 −0,2683 

3 2,0 1,0531 0,8473 −0,2363 −0,4021 

4 2,5 - 0,8075 0,0019 −0,2376 

5 3,0 0,9866 0,8744 −0,1346 0,2164 

6 3,5 0,8912 1,0047 −0,2212 0,5796 

7 4,0 0,8800 1,0285 −0,2485 0,5654 

8 4,5 1,2612 1,0542 0,2766 0,4937 

 
Table 5.2 - Comparison between numerical and experimental results for Strouhal number, Re =6,5×104 

 
Downstream Cylinder Upstream Cylinder  

Case 
 

g/d 
+St  ∗St : Q(x,y) +St  ∗St : P(x,y) 

1 1,1 0,1365 0,1400 0,1360 0,1400 

2 1,5 0,1387 0,1564 0,1365 0,1787 

3 2,0 0,1411 0,1333 0,1411 0,1282 

4 2,5 0,1387 0,1800 0,1411 0,1800 

5 3,0 0,1365 0,1600 0,1387 0,2000 

6 3,5 0,1350 0,1800 0,1365 0,1800 

7 4,0 0,1818 0,1800 0,1818 0,1800 

8 4,5 0,1867 0,2000 - 0,2000 
                           + Experimental results (Alam et al., 2003)             * Present Simulation 

 
The experimental results revealed a discontinuous jump on drag coefficient and Strouhal number at critical spacing 

gap g/d=4. The discontinuity was interpreted as the result of an abrupt change from one stable flow pattern to another; 
this behaviour was classified as bi-stable state.  On the other hand, the numerical results revealed the discontinuous 
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jump at g/d=3. The results from Biermann and Herrnstein (1933), showed the bi-stable state on time-averaged drag 
coefficient for downstream cylinder at g/d≈3 in agreement with the present numerical results.  

When the spacing between cylinders is larger than the critical spacing, the flow pattern is referred as co-shedding 
type. Figure 2 shows the possible binary-vortex structure for spacing gap g/d=4.5, with both cylinders shedding 
vortices. The main purpose of this work was to identify a possible formation of a binary vortex street behind 
downstream cylinder (Zdravkovich, 1987). The vortex formation from two cylinders is independent for g/d >6-8. 

 
 

 
 

Figure 2. Position of the binary-vortex street at t=75 for the spacing gap g/d=4.5. 
 
Computed values for time-evolution drag and lift coefficients are plotted in Fig. 3. Figure 4 shows plots of 

instantaneous pressure distributions on the cylinders surface for the spacing gap g/d=4.5. Pressure distributions A, B, C, 
D and E are related to instants A, B, C, D and E as indicated in Fig. 3. The vortex shedding effect can be seen in 
oscillations of the lift and drag coefficients. As soon as the numerical transient is over and the periodic steady state 
regime is reached (from t = 22 on, approximately) the upstream cylinder lift coefficient shows a mean variation between 
– 1.19 and 1.12, approximately, with a dimensionless frequency (Strouhal number) about twice the frequency of the 
drag coefficient, in accordance to the physics involved in the flow. Figure 3(a) indicates that the fluctuation of CD has 
twice the frequency of CL, because it fluctuates once for each of upper and lower shedding. 

The time history of drag and lift curves for downstream cylinder present interference effects due to the upstream 
cylinder viscous wake; see in Fig, 3(b).  
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(a) upstream cylinder     (b) downstream cylinder 

 
Figure 3. Time history of drag and lift coefficients for two circular cylinders in tandem arrangement for the spacing gap 

g/d=4.5. 
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For both Fig 3(a) and Fig 3(b) the instant A is defined by a maximum value of the lift coefficient; at this moment a 

large clockwise vortex structure (in fact a cluster of vortices) is detaching from the upstream circular cylinder upper 
surface and moving toward the binary vortex-street; this structure is indicated in Fig. 5(a). As this structure moves 
downstream it pushes away an anti-clockwise structure that was stationed behind the upstream cylinder and the drag 
coefficient increases. At instant B the anti-clockwise structure detaches from the upstream cylinder surface and is 
incorporated into the viscous wake; this process creates a low pressure region at the rear part of the upstream cylinder 
which is associated to the high drag value (Fig. 3 and Fig. 4). At this moment a new anti-clockwise vortex structure that 
has already started at the low side of the upstream cylinder surface can be observed. The above described sequence of 
events repeats all over again. Therefore, the lowest value of the lift coefficient is observed when another cluster, now 
rotating in the anti-clockwise direction, leaves the upstream body surface (point C in Fig. 4(a) and Fig. 5(c)). 

 
 

 
 

(a) upstream cylinder 
 
 

 
 

(b) downstream cylinder 
 

Figure 4. Instantaneous pressure distributions for two circular cylinders in tandem arrangement for the spacing gap 
g/d=4.5. 
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                                             (a) Point A                                                                 (b) Point B 

 
 

 
                                              (c) Point C                                                                  (d) Point D 

 
 

 
(e) Point E 

 
Figure 5. Near wake behaviour between t=56.65 and t=61.85 for two circular cylinders in tandem arrangement for the 

spacing gap g/d=4.5. 
 
There are many unknown and discrepant points in previous studies on two immovable circular cylinders arranged in 

tandem (Igarashi, 1981). In the literature, there have been very few studies by considering measure of fluctuating lift 
and drag forces on the cylinders. Therefore, the present numerical study was motivated by both fundamental and 
practical considerations.  

As future work, a tandem pair of cylinders with downstream one free to oscillate will be investigated. The analysis 
will evolve: dynamic responses in amplitude and dominant oscillation frequency; instantaneous phase angle between 
fluid forces and cylinder displacement and phase angle between the immovable upstream cylinder and downstream 
cylinder oscillations. 
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