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Abstract. This paper presents solutions to heat transfer problems that occur in flow microtubes driven by the combined

effect of electroosmosis and a pressure gradient. Fully developed velocity profiles are considered, leading to a Graetz-type

problem for the thermally developing flow. The case without axial diffusion and a isothermal wall condition is analyzed.

The solution methodology is based on the Generalized Integral Transform Technique, which is shown to lead to a fully

analytical solution for the problem in terms of a matrix exponential. With the solution of the temperature fields, the

behavior of the Nusselt number is investigated for different test-cases.
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1. NOMENCLATURE

Am,n transformed equation coefficients
bn transformed inlet condition coefficients
A, D, M integral transform coefficients matrices
b integral transform coefficients vector
D diameter
Ex electric field in main flow direction
F filter function
kB Boltzmann constant
N norm
nmax truncation order
p pressure
T temperature
Tw wall temperature
T0 inlet temperature
u velocity
u∗ dimensionless velocity
ū average velocity
x, r spatial coordinates

Greek symbols
α thermal diffusivity
γ eigenvalues
Φ eigenfunctions
λ Debye length
ρe charge density
ξ, η dimensionless coordinates
Θ dimensionless temperature
Θm dimensionless mean stream temperature
θ filtered dimensionless temperature
θ̄ transformed dimensionless temperature
Dimensionless numbers
Br Brinkman number
Jo dimensionless Joule heating parameter
Nu Nusselt number (based on diameter)
Pe Peclet number (based on half diameter)
Subscripts
n, m summation indexes

2. INTRODUCTION

Driving fluid flow through extremely small passages can become quite cumbersome if one relies sole on pressure
gradient effects. This occurs due to the increased pressure drop associated with micro-scale tube diameters, and hence
alternative means of flow actuation become necessary. One such alternative is by applying an electrical field, leading to the
so-called electrokinetic flows. One type of electrokinetic flow is that given by electroosmotic effects. Horiuchi and Dutta
(2004) examined the Nusselt number in electroosmosis driven flow in parallel plates channels. A fully analytical solution
was presented for the simplified case with a thin EDL, leading to a plug-like velocity profile is analyzed for the thermally
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developing region. Chakraborty (2006) developed analytical solutions for fully developed flow in circular micro-tubes
with both pressure and electroosmotic driven flow. Chen (2009) also analyzed the thermally developed flow actuated
by both pressure gradient and electroosmotic effects; however, parallel plates micro-channels were considered, and the
effects of variable fluid properties were also analyzed. Dey et al. (2011) also analyzed the fully developed Nusselt number
using analytical solutions, but the authors considered the case with thick EDL, in which the electroosmotic velocity profile
is no longer plug-like. The work of Maynes and Webb (2004) also analyzed the fully-developed heat transfer in micro
channel flow driven by electroosmosis. The work of Sharma and Chakraborty (2008) presented an analytical solution for
the thermally-developing pressure and electroosmotic driven flow with a step-change in wall temperature, considering the
thin EDL case.

Several recent heat transfer studies in micro-channels involve analytical solutions for calculating Nusselt numbers in
both developing and thermally developed flow. Nevertheless, if more complicated problems are considered, such as those
with non-linear effects and complex geometries, traditional numerical methods are required.An alternative to traditional
numerical methods, is the hybrid analytical-numerical method known as the Generalized Integral Transform Technique
(GITT) (Cotta, 1994), which is based on seeking solutions in terms of orthogonal eigenfunction expansions. Among
applications of the GITT in micro-channel problems, one should mention study (Mikhailov and Cotta, 2005), which
investigates heat transfer solutions for slip-flow in parallel plate channels, and (Castellões et al., 2010) which examines
flows within wavy walls. Very recently, two studies presented GITT solutions to extended Graetz problems in flows driven
by the combined effect of electroosmosis and a pressure gradient in microchannels (Sphaier, 2012a,b); nevertheless these
works were strictly focused on parallel-plates ducts. Other recent studies also present solutions for a similar problem
within parallel plates channels, but using different methodologies which require a finite-volume solution (Dey et al.,
2012) and employ non-orthgonal eigenfunction bases (Sadeghi et al., 2012).

The purpose of this work is to provide a GITT solution for thermally developing flow within micro-tubes, i.e. circular
ducts, driven by both electroosmosis and a pressure gradient. The effects of Joule and viscous dissipation heating are
included in the analysis and flows with both thin and thick EDL are considered; however, the simplified case without axial
diffusion will be considered.

3. PROBLEM FORMULATION

The studied problem is that of steady incompressible laminar flow inside a micro-tube, driven by both pressure and
electroosmotic effects. The flow is considered dynamically developed, but thermally developing. Under this assumptions,
the momentum equations are simplified to:

µ
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)
+ ρeEx =

dp

dx
for 0 ≤ r ≤ D/2,

(
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)
r= 0

= 0, u(D/2) = 0, (1)

in which ρe is the distribution of excess charge density, which is obtained from a simultaneous solution of Poisson’s equa-
tion of potential distribution and Boltzmann equation of charge density distribution. For the current problem assumptions,
this corresponds to solving the following system:
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, ψ′(0) = 0, ψ(D/2) = ζ, (2a)

in which the charge density per unit volume is given by:

ρe ≈ −2
n0 z

2 e2 ψ

kB T
= −ω2 ε ε0, (2b)

where z is the valence of the concerned charge, e is the electronic charge, n0 is the average number of positive or negative
ions in the buffer, and ψ is the electroosmotic potential. kB is the Boltzmann constant and T is the absolute temperature.
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The adopted expression also assumes that the wall zeta potential is constant and small enough (ζ < 3 kB T ) so that the
Debey-Hückel linearization approximation may be applied. The parameter ω is the Debye-Hückel parameter (Dutta and
Beskok, 2001), also related to the characteristic thickness of the EDL, which is also known as the Debye length (λ):

ω =
1

λ
=

√
2n0 z2 e2

ε ε0 kB T
. (3)

The solution of system (2) yields the following potential and charge distributions:

ψ = ζ
I0(r/λ)

I0(D/(2λ))
, ρe = −ε ε0 ζ

λ2

I0(r/λ)

I0(D/(2λ))
, (4)

which leads to the following velocity profile:

u(r) = uHP

(
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(
2 r

D

)2
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+ uHS

(
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)
, uHP = − D2

16µ

dp
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, uHS = −ε ε0 ζ Ex

µ
. (5)

where I0 is the zeroth-order modified Bessel function of the first kind and uHP and uHS are the reference Hagen-
Poiseiulle and Helmholtz-Smoluchowski velocities, corresponding, respectively, to characteristic velocities for pure pressure-
diven flow and pure electroosmotic-driven flow.

The temperature distribution, already given in dimensionless form, is governed by the following equation and boundary
conditions:
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= 0. (6b)

where u∗ is the the normalized velocity profile, given by:

u∗ =
u

ū
=

((
1− η2

)
Ω + 1

)
I0(κλ)− I0(ηκλ)

Ω
2 I0(κλ) + I2(κλ)

. (7)

The dimensionless parameters are given by:
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µ ū2

k∆T
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x σ
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ūD/2

α
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where ∆T = T0 − Tw and the dimensionless variables are defined as:

Θ(ξ, η) =
T (x, y)− Tw
T0 − Tw

, η =
r

D/2
, ξ =

x

D/2 Pe
. (9)

Finally, the Nusselt number, in terms of the dimensionless variables, is calculated from:

Nu =
2 (∂Θ

/
∂η)η=1

Θw −Θm
, Θw = 0, Θm = 2

∫ 1

0

η u∗Θ dη. (10)
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4. INTEGRAL TRANSFORM SOLUTION

As usual in GITT solutions, a filter problem is proposed for removing non-homogenities from the original system.
The filter is based on the following solution separation:

Θ(ξ, η) = θ(ξ, η) + F (η), (11)

in which θ is the filtered variable and F is the filter function. The filter function is obtained from solving the following
filter problem:

1

η

d

dη
(η F ′(η)) + Br

(
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)2

+ Jo = 0 F ′(0) = 0, F (1) = 0. (12)

With the filter problem, the a homogeneous problem (governing equations and boundary conditions in transversal
direction) is obtained:
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(
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η=0

= 0, θ(0, η) = 1− F (η),

(
∂θ
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)
ξ→∞

= 0. (13b)

The solution of the considered problem is accomplished employing the Generalized Integral Transform Technique
(Cotta, 1993). The solution process is started by defining the transformation pair:

Transform ⇒ θ̄n(ξ) =

∫ 1

0

η θ(ξ, η)Φn(η) dη, Inversion ⇒ θ(ξ, η) =

∞∑
n=1

θ̄n(ξ) Φn(η)

Nn
, (14)

where Φn’s are orthogonal solutions of a Sturm-Liouville problem. For the current application the one-dimensional
Helmholtz problem is selected:

1

η

d

dη
(ηΦ′n(η)) + γ2

n Φn(η) = 0, for 0 ≤ η ≤ 1, Φ′n(0) = 0, Φn(1) = 0. (15)

which leads to infinite nontrivial solutions in the form:

Φn(η) = J0(γn η), with J0(γn) = 0, and Nn =

∫ 1

0

ηΦ2
n(η) dη. (16a)

where n is a positive integer.
The transformation of the given problem is accomplished by multiplying eq. (13a) by Φn, integrating within 0 ≤ η ≤

1, and applying the inversion formula (14) to the non-transformable terms, which yields:

Pe−2 θ′′n(ξ) −
∞∑
m=1

An,m θ̄
′
m(ξ)− γ2

n θ̄n(ξ) = 0, θ̄n(0) = bn, θ̄′n(∞) = 0, (17)

for n = 1, 2, . . . ,∞. The Am,n and bn coefficients are given by:

An,m =
1

Nm

∫ 1

0

η u∗(η) Φm(η) Φn(η) dη, bn =

∫ 1

0

η (1− F (η)) Φn(η) dη. (18)

In order to solve system (17), the infinite system representation must be truncated to a finite number of terms nmax,
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which is denoted the truncation order. After truncating these equations the following vectorial form is introduced:

Pe−2 T̄
′′
(ξ) − A·T̄ ′(ξ) − D ·T̄ (ξ) = 0, T̄ (0) = b, T̄

′
(∞) = 0, (19)

where T̄ is a vector with the unknown transformed potentials, the matrix A is given by the coefficients Am,n and D is a
diagonal matrix, whose coefficients are given by Dn,n = γ2

n.
For situations in which axial heat diffusion could be discarded, as considered in this study, the boundary value problem

represented by equations (19) is reduced to an initial value problem and a fully analytical solution can be obtained:

T̄ (ξ) = C(ξ)·b, with C(ξ) = exp(M ξ) and M = −A−1 ·D. (20)

where the coefficients of b are given by eq. (18), and C is a matrix exponential.

5. RESULTS AND DISCUSSION

After the presentation of the adopted methodology, illustrative results are provided and discussed, starting with cases
that involve no flow heating effects. The first results examine the effects of the variation of the EDL thickness on the
Nusselt number, as presented in table 1 for different truncation orders (nmax) and different κλ values, including the
limiting case with κλ = ∞, corresponding to the simple plug-flow solution. As can be seen, larger Nusselt values are

Table 1. Nuseelt values for different EDL thicknesses without flow heating in purely electroosmotic flow.

nmax ξ=0.001 ξ=0.01 ξ = 0.1 ξ = 1 ξ = 10 ξ=0.001 ξ=0.01 ξ = 0.1 ξ = 1 ξ = 10
Ω = 0, κλ = 1, Br = 0, Jo = 0 Ω = 0, κλ = 10, Br = 0, Jo = 0

5 17.6150 8.28696 4.05503 3.69963 3.69963 18.5656 10.8926 5.21033 4.80779 4.80779
10 19.5531 7.57838 4.04522 3.69510 3.69510 26.1289 10.0253 5.18070 4.79295 4.79295
20 16.5517 7.55356 4.04386 3.69448 3.69448 22.6511 9.92775 5.17564 4.79031 4.79031
40 16.4669 7.55030 4.04368 3.69440 3.69440 22.3612 9.91506 5.17493 4.78993 4.78993
60 16.4599 7.54996 4.04366 3.69439 3.69439 22.3336 9.91373 5.17486 4.78989 4.78989
80 16.4582 7.54988 4.04365 3.69438 3.69438 22.3267 9.91341 5.17484 4.78988 4.78988

100 16.4575 7.54985 4.04365 3.69438 3.69438 22.3243 9.91329 5.17483 4.78988 4.78988
Ω = 0, κλ = 100, Br = 0, Jo = 0 Ω = 0, κλ =∞, Br = 0, Jo = 0

5 19.8513 12.6537 6.07839 5.67086 5.67086 20.1888 12.8103 6.17893 5.78319 5.78319
10 31.2008 12.8958 6.07732 5.67027 5.67027 31.6729 13.0686 6.17893 5.78319 5.78319
20 35.9207 12.8594 6.07576 5.66939 5.66939 37.1297 13.0687 6.17893 5.78319 5.78319
40 35.0840 12.8292 6.07439 5.66862 5.66862 37.2975 13.0687 6.17893 5.78319 5.78319
60 34.8392 12.8204 6.07399 5.66839 5.66839 37.2975 13.0687 6.17893 5.78319 5.78319
80 34.7585 12.8173 6.07385 5.66831 5.66831 37.2975 13.0687 6.17893 5.78319 5.78319

100 34.7257 12.8161 6.07379 5.66827 5.66827 37.2975 13.0687 6.17893 5.78319 5.78319

obtained for thiner EDLs due to the larger velocities near the walls, which will lead to better heat transfer rates at these
locations. The maximum values naturally occur in the limiting plug-flow situation, and as the κλ values are increased the
Nu values approach this limit, as expected. When comparing to traditional literature results, one notices that for κλ =∞,
the fully-developed Nusselt values are in agreement with the well-known plug-flow value of 5.78.When looking into the
local convergence behavior of the solutions, one notices that better convergence rates are generally seen for positions
upstream. Moreover, the solution with κλ =∞ yields the best convergence behavior: as little as 40 terms are sufficient to
ensure a converged solution with six significant figures at the worst position (ξ = 0.001) and only 5 terms yield the same
converge behavior for upstream positions. When examining the other cases, one can observe that the worst convergence
rate is seen for κλ = 100, which may be attributed to the higher velocity gradient near the wall.

Next, table 2 examines the effects of the flow driving mechanism parameter (Ω) for the thin EDL limit, again, presented
for different truncation orders. Naturally, there is no need to present the limiting case of Ω = 0 for this case, since these
results have already been displayed in table 1. By observing the Nusselt values presented in this table, one clearly sees
that for small and large Ω values, respectively, the solution approaches the traditional Nusselt values seen in plug-flow
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Table 2. Nusselt values for different values of Ω with thin EDLs and no flow heating.

nmax ξ=0.001 ξ=0.01 ξ = 0.1 ξ = 1 ξ = 10 ξ=0.001 ξ=0.01 ξ = 0.1 ξ = 1 ξ = 10
Ω = 0.1, κλ =∞, Br = 0, Jo = 0 Ω = 1, κλ =∞, Br = 0, Jo = 0

5 20.0762 12.5985 6.03041 5.63218 5.63218 19.3873 11.3115 5.25830 4.86027 4.86027
10 31.3389 12.7711 6.02945 5.63169 5.63169 29.0219 11.0304 5.25305 4.85771 4.85771
20 36.3175 12.7673 6.02933 5.63162 5.63162 31.0149 11.0116 5.25237 4.85736 4.85736
40 36.4156 12.7669 6.02931 5.63161 5.63161 30.8605 11.0095 5.25228 4.85732 4.85732
60 36.4144 12.7669 6.02931 5.63161 5.63161 30.8536 11.0093 5.25227 4.85731 4.85731
80 36.4141 12.7669 6.02931 5.63161 5.63161 30.8521 11.0092 5.25227 4.85731 4.85731
100 36.4140 12.7669 6.02931 5.63161 5.63161 30.8515 11.0092 5.25227 4.85731 4.85731

Ω = 10, κλ =∞, Br = 0, Jo = 0 Ω =∞, Br = 0, Jo = 0
5 18.0710 8.97917 4.27116 3.90437 3.90437 17.5711 8.18315 4.01542 3.66175 3.66175

10 22.6659 8.28440 4.26239 3.90030 3.90030 19.2766 7.49769 4.00611 3.65747 3.65747
20 20.0844 8.26008 4.26119 3.89974 3.89974 16.3581 7.47393 4.00482 3.65688 3.65688
40 19.9910 8.25693 4.26103 3.89967 3.89967 16.2736 7.47084 12.2062 3.65680 3.65680
60 19.9826 8.25661 4.26101 3.89966 3.89966 16.2669 7.47052 4.00463 3.65680 3.65680
80 19.9806 8.25653 4.26101 3.89966 3.89966 16.2652 7.47044 4.00463 3.65679 3.65679
100 19.9798 8.25650 4.26101 3.89966 3.89966 16.2647 7.47041 4.00463 3.65679 3.65679

(5.78) and Hagen-Poiseuille flow (3.66), in the thermally developed region (ξ = 10), as expected. Also, since a plug-
flow configuration yields better heat transfer rates, higher Nusselt values are seen for smaller Ω values. When analyzing
the convergence behavior of the presented results, one notices, again, that better convergence rates are generally seen
for positions upstream. Furthermore, if the convergence between the different cases are compared, it is seen that better
results are obtained for smaller values of Ω, as these approach the plug-flow situation without increasing the wall velocity
gradient, differently than what occurred for κλ = 100 in table 1.

The next results examine the effects of Joule heating for purely electroosmotic-driven flow with different EDL thick-
nesses. Table 3 displays Nusselt values calculated for different truncation orders for κλ = 1 and κλ = 10 and different
values of the Joule heating parameter. As observed from this table, the parameter Jo has the effect of increasing the
Nusselt number towards the fully developed region when compared to the cases without heating. It is also interesting to
note that, towards the fully developed region, the Nusselt values become independent of Jo, regardless of its magnitude.
With regards to convergence behavior, one notices that in downstream positions, the convergence rates are similar to those
seen in cases without flow heating effects; however, in upstream positions, the convergence rate is improved in cases with
Jo 6= 0. This is expected to occur since the employed filter solution is actually the fully developed solution for these cases.

After Joule heating, table 4 presents local Nu values calculated with different truncation orders for different values
of the EDL thickness parameter κλ and different values of the Brinkman number. As can be seen, reducing the EDL
thickness increases the Nusselt number significantly, due to the higher velocity gradients at the wall. Nevertheless, this
augmentation is seen for all ξ values only for the case with Br = 1; for lower Brinkman values the significant augmentation
in Nu is only seen for positions upstream, as also observed in the Joule heating cases. In fact, as the flow enters the fully
developed region, the calculated Nusselt value becomes independent of the value of Br, similarly to what was observed in
cases with Joule heating. This effect is in accordance with literature results for fully developed solutions. Finally, when
looking into the convergence behavior of the solution, similar observations made for the Nusselt results calculated with
Joule heating apply: in the downstream region, the convergence is similar to that of no-heating cases, while in upstream
region much better convergence rates are seen, which is again due to the fact that the filter solution for Br 6= 0 is the
actual fully-developed solution.

6. CONCLUSIONS

This paper presented a formal solution by the GITT to the extended Graetz problem, including the effects of viscous
heating, Joule heating, and flow actuation by means of pressure gradient and electroosmosis. The case of isothermal walls
was considered. Fully analytical solutions in terms of a matrix exponential are obtained for cases with negligible axial
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Table 3. Nusselt values in purely electroosmotic flow with Joule heating for different EDL thicknesses.

nmax ξ=0.001 ξ=0.01 ξ = 0.1 ξ = 1 ξ = 10 ξ=0.001 ξ=0.01 ξ = 0.1 ξ = 1 ξ = 10
Ω = 0, κλ = 1, Br = 0, Jo = 10−6 Ω = 0, κλ = 10, Br = 0, Jo = 10−6

5 17.6150 8.28696 4.05503 3.69965 6.03040 18.5656 10.8926 5.21033 4.80784 6.93156
10 19.5531 7.57838 4.04522 3.69512 6.03040 26.1289 10.0253 5.18070 4.79300 6.93156
20 16.5517 7.55356 4.04386 3.69450 6.03040 22.6511 9.92775 5.17564 4.79035 6.93156
40 16.4669 7.55030 4.04368 3.69441 6.03040 22.3612 9.91506 5.17493 4.78998 6.93156
60 16.4599 7.54996 4.04366 3.69441 6.03040 22.3336 9.91373 5.17486 4.78994 6.93156
80 16.4582 7.54988 4.04365 3.69440 6.03040 22.3267 9.91341 5.17484 4.78993 6.93156

100 16.4575 7.54985 4.04365 3.69440 6.03040 22.3243 9.91329 5.17483 4.78993 6.93156
Ω = 0, κλ = 1, Br = 0, Jo = 10−4 Ω = 0, κλ = 10, Br = 0, Jo = 10−4

5 17.6150 8.28698 4.05509 3.70153 6.03040 18.5656 10.8926 5.21038 4.81253 6.93156
10 19.5531 7.57841 4.04528 3.69700 6.03040 26.1289 10.0253 5.18075 4.79773 6.93156
20 16.5517 7.55359 4.04392 3.69638 6.03040 22.6511 9.92777 5.17570 4.79509 6.93156
40 16.4669 7.55032 4.04374 3.69630 6.03040 22.3612 9.91508 5.17499 4.79472 6.93156
60 16.4599 7.54999 4.04372 3.69629 6.03040 22.3336 9.91375 5.17491 4.79468 6.93156
80 16.4582 7.54991 4.04372 3.69629 6.03040 22.3267 9.91343 5.17489 4.79467 6.93156

100 16.4575 7.54988 4.04371 3.69629 6.03040 22.3243 9.91331 5.17489 4.79467 6.93156
Ω = 0, κλ = 1, Br = 0, Jo = 10−2 Ω = 0, κλ = 10, Br = 0, Jo = 10−2

5 17.6159 8.28926 4.06118 3.87551 6.03040 18.5664 10.8942 5.21594 5.19601 6.93156
10 19.5542 7.58081 4.05139 3.87153 6.03040 26.1296 10.0270 5.18639 5.18487 6.93156
20 16.5529 7.55600 4.05003 3.87098 6.03040 22.6519 9.92954 5.18135 5.18289 6.93156
40 16.4681 7.55274 4.04985 3.87091 6.03040 22.3621 9.91685 5.18064 5.18261 6.93156
60 16.4611 7.55240 4.04984 3.87090 6.03040 22.3344 9.91553 5.18057 5.18258 6.93156
80 16.4593 7.55232 4.04983 3.87090 6.03040 22.3275 9.91520 5.18055 5.18257 6.93156

100 16.4587 7.55229 4.04983 3.87090 6.03040 22.3251 9.91509 5.18054 5.18257 6.93156
Ω = 0, κλ = 1, Br = 0, Jo = 1 Ω = 0, κλ = 10, Br = 0, Jo = 1

5 17.7122 8.51449 4.61566 5.82036 6.03040 18.6499 11.0481 5.71264 6.85616 6.93156
10 19.6615 7.81914 4.60836 5.82024 6.03040 26.1982 10.2002 5.69032 6.85591 6.93156
20 16.6691 7.79508 4.60734 5.82022 6.03040 22.7325 10.1051 5.68654 6.85586 6.93156
40 16.5847 7.79192 4.60721 5.82022 6.03040 22.4435 10.0927 5.68601 6.85586 6.93156
60 16.5777 7.79160 4.60719 5.82022 6.03040 22.4159 10.0914 5.68595 6.85586 6.93156
80 16.5760 7.79152 4.60719 5.82022 6.03040 22.4091 10.0911 5.68594 6.85586 6.93156

100 16.5753 7.79149 4.60719 5.82022 6.03040 22.4066 10.0910 5.68593 6.85586 6.93156

diffusion. The results demonstrated that the convergence behavior of the GITT is such that, for positions upstream, a high
convergence rate is seen, whereas near the channel entrance more terms are required in the truncated series.
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