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Abstract. This paper presents solutions to heat transfer problems that occur in flow microtubes driven by the combined
effect of electroosmosis and a pressure gradient. Fully developed velocity profiles are considered, leading to a Graetz-type
problem for the thermally developing flow. The case without axial diffusion and a isothermal wall condition is analyzed.
The solution methodology is based on the Generalized Integral Transform Technique, which is shown to lead to a fully
analytical solution for the problem in terms of a matrix exponential. With the solution of the temperature fields, the

behavior of the Nusselt number is investigated for different test-cases.
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1. NOMENCLATURE

Amn transformed equation coefficients

b, transformed inlet condition coefficients Greek symbols

A, D, M integral transform coefficients matrices o thermal diffusivity

b integral transform coefficients vector ¥ eigenvalues

D diameter d eigenfunctions

E, electric field in main flow direction A Debye length

F filter function Pe charge density

kp Boltzmann constant ¢, m  dimensionless coordinates

N norm C) dimensionless temperature

Nmax truncation order O, dimensionless mean stream temperature
p pressure 0 filtered dimensionless temperature

T temperature 0 transformed dimensionless temperature
Tw wall temperature Dimensionless numbers

To inlet temperature Br Brinkman number

U velocity Jo dimensionless Joule heating parameter
u* dimensionless velocity Nu Nusselt number (based on diameter)

U average velocity Pe Peclet number (based on half diameter)
T, T spatial coordinates Subscripts

n, m summation indexes

2. INTRODUCTION

Driving fluid flow through extremely small passages can become quite cumbersome if one relies sole on pressure
gradient effects. This occurs due to the increased pressure drop associated with micro-scale tube diameters, and hence
alternative means of flow actuation become necessary. One such alternative is by applying an electrical field, leading to the
so-called electrokinetic flows. One type of electrokinetic flow is that given by electroosmotic effects. Horiuchi and Dutta
(2004) examined the Nusselt number in electroosmosis driven flow in parallel plates channels. A fully analytical solution

was presented for the simplified case with a thin EDL, leading to a plug-like velocity profile is analyzed for the thermally
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developing region. Chakraborty (2006) developed analytical solutions for fully developed flow in circular micro-tubes
with both pressure and electroosmotic driven flow. Chen (2009) also analyzed the thermally developed flow actuated
by both pressure gradient and electroosmotic effects; however, parallel plates micro-channels were considered, and the
effects of variable fluid properties were also analyzed. Dey et al. (2011) also analyzed the fully developed Nusselt number
using analytical solutions, but the authors considered the case with thick EDL, in which the electroosmotic velocity profile
is no longer plug-like. The work of Maynes and Webb (2004) also analyzed the fully-developed heat transfer in micro
channel flow driven by electroosmosis. The work of Sharma and Chakraborty (2008) presented an analytical solution for
the thermally-developing pressure and electroosmotic driven flow with a step-change in wall temperature, considering the
thin EDL case.

Several recent heat transfer studies in micro-channels involve analytical solutions for calculating Nusselt numbers in
both developing and thermally developed flow. Nevertheless, if more complicated problems are considered, such as those
with non-linear effects and complex geometries, traditional numerical methods are required.An alternative to traditional
numerical methods, is the hybrid analytical-numerical method known as the Generalized Integral Transform Technique
(GITT) (Cotta, 1994), which is based on seeking solutions in terms of orthogonal eigenfunction expansions. Among
applications of the GITT in micro-channel problems, one should mention study (Mikhailov and Cotta, 2005), which
investigates heat transfer solutions for slip-flow in parallel plate channels, and (Castelldes et al., 2010) which examines
flows within wavy walls. Very recently, two studies presented GITT solutions to extended Graetz problems in flows driven
by the combined effect of electroosmosis and a pressure gradient in microchannels (Sphaier, 2012a,b); nevertheless these
works were strictly focused on parallel-plates ducts. Other recent studies also present solutions for a similar problem
within parallel plates channels, but using different methodologies which require a finite-volume solution (Dey et al.,
2012) and employ non-orthgonal eigenfunction bases (Sadeghi et al., 2012).

The purpose of this work is to provide a GITT solution for thermally developing flow within micro-tubes, i.e. circular
ducts, driven by both electroosmosis and a pressure gradient. The effects of Joule and viscous dissipation heating are
included in the analysis and flows with both thin and thick EDL are considered; however, the simplified case without axial

diffusion will be considered.
3. PROBLEM FORMULATION

The studied problem is that of steady incompressible laminar flow inside a micro-tube, driven by both pressure and
electroosmotic effects. The flow is considered dynamically developed, but thermally developing. Under this assumptions,
the momentum equations are simplified to:

1d du dp du
e et . <r< = = =
] (7" dr) + pe By g for 0<r<D/2, (dr)r_o 0, u(D/2) = 0, (D

in which p, is the distribution of excess charge density, which is obtained from a simultaneous solution of Poisson’s equa-
tion of potential distribution and Boltzmann equation of charge density distribution. For the current problem assumptions,

this corresponds to solving the following system:

1 d ( CW) _ e W(0) = 0, Ww(DJ2) = ¢, (2a)

rar \"dr €€y’
in which the charge density per unit volume is given by:

ng 22 €2 _

pe A —2 T —w?ee, (2b)

where z is the valence of the concerned charge, e is the electronic charge, n is the average number of positive or negative

ions in the buffer, and v is the electroosmotic potential. kp is the Boltzmann constant and 7" is the absolute temperature.
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The adopted expression also assumes that the wall zeta potential is constant and small enough (( < 3kp T so that the
Debey-Hiickel linearization approximation may be applied. The parameter w is the Debye-Hiickel parameter (Dutta and
Beskok, 2001), also related to the characteristic thickness of the EDL, which is also known as the Debye length ()\):

1 2ng 22 €2
w A ecgkpT )

The solution of system (2) yields the following potential and charge distributions:

_Lo(r/N) __cef Io(r/))
L(o/2N) P X Io(D/(2N))’

Y= “4)

which leads to the following velocity profile:

_ 2r\® Io(r/\) _ D*dp _ clEL
u(r)—qu (1— (D) ) +ugs (1—1()(1)/(2/\))>, UHP__ﬁ @, UHS__T. &)

where [j is the zeroth-order modified Bessel function of the first kind and ugp and upyg are the reference Hagen-
Poiseiulle and Helmholtz-Smoluchowski velocities, corresponding, respectively, to characteristic velocities for pure pressure-
diven flow and pure electroosmotic-driven flow.

The temperature distribution, already given in dimensionless form, is governed by the following equation and boundary

conditions:
00 L8020 19 [ 0O our\?
e = Pe f—r + —— —_— B
" o TS - non (n 571) " r(an) e ©
00 00
0(,1) = 0, — =0, 0(0,n) = 1, — = 0. (6b)
&1 (577 )n_o (®9) <8€ >§~>OO

where u* is the the normalized velocity profile, given by:

(A=) Q+1) Io(ka) — To(nk) (7
- 5 Io(ka) + Ia(k) '

NSRS

The dimensionless parameters are given by:

—2 2 2 - 2
Wi E:oc (D uD/2 D/2 1dp (D/2)
T kAT % T kAT <2) ’ ¢ a 0 MmT T LdreeoC By ®
where AT = Ty — T, and the dimensionless variables are defined as:
@(f ) _ T(x,y) - Ty T 5 o x (9)
T T, "= D2 ~ D/2Pe’

Finally, the Nusselt number, in terms of the dimensionless variables, is calculated from:

2000/

1
0, =0, 0,, =2 *Odn. 10
6. _0, /Onu i (10)
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4. INTEGRAL TRANSFORM SOLUTION

As usual in GITT solutions, a filter problem is proposed for removing non-homogenities from the original system.

The filter is based on the following solution separation:

@(5’77) = 0(5777) +F(n)’ (11)

in which 6 is the filtered variable and F’ is the filter function. The filter function is obtained from solving the following

filter problem:

li( F'(n)) + Br <8u*>2 +Jo=0 F'(0) = 0 F(1) =0 (12)
oy 1 o ; :

With the filter problem, the a homogeneous problem (governing equations and boundary conditions in transversal

direction) is obtained:

L0 10 (0

o =T Tae Ty <n3n>’ (3
00 00

0(¢,1) =0, DY —0, 00,0 =1-F(n), Z) —o. 13b

€ () =0 som=1-re.  (5) - (13b)

The solution of the considered problem is accomplished employing the Generalized Integral Transform Technique

(Cotta, 1993). The solution process is started by defining the transformation pair:

1 oo
Transform = 0,(¢) = / n0(&, )P, (n) dn, Inversion = 6(§, n) = Z w, (14)
0 n=1 n

where ®,,’s are orthogonal solutions of a Sturm-Liouville problem. For the current application the one-dimensional

Helmbholtz problem is selected:

1 d / 2 /

E?n("@*b(”)) + Y, ®u(n) =0, for 0<n<1, ®,(0) =0, ®,(1) = 0. (15)
which leads to infinite nontrivial solutions in the form:

1
Ba) = Do) with h(w) =0 and N, = [ @)y (162)
0

where n is a positive integer.

The transformation of the given problem is accomplished by multiplying eq. (13a) by ®,,, integrating within 0 < n <

1, and applying the inversion formula (14) to the non-transformable terms, which yields:

Pe 2 01(¢) = Y Anm 0,,(6) =717 0n(&) =0, 0,(0) = by,  6,(c0) =0, (17)
m=1
forn=1,2,...,00. The A,, ,, and b,, coefficients are given by:
1 1 1
Anm = 5 /0 nu*(n) @m(n) @n(n) dn, b = /0 n (1= F(n)) @n(n) dn. (18)

In order to solve system (17), the infinite system representation must be truncated to a finite number of terms 7,,x,
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which is denoted the truncation order. After truncating these equations the following vectorial form is introduced:
Pe ?T"(¢) — AT'(¢) — D-T(€) =0, T(0) = b, T'(c0) = 0, (19)

where T is a vector with the unknown transformed potentials, the matrix A is given by the coefficients Apnand Dis a
diagonal matrix, whose coefficients are given by D,, , = 2.
For situations in which axial heat diffusion could be discarded, as considered in this study, the boundary value problem

represented by equations (19) is reduced to an initial value problem and a fully analytical solution can be obtained:
T() = C(&)-b, with C(&) = exp(M¢) and M =-A'D. (20)
where the coefficients of b are given by eq. (18), and C' is a matrix exponential.

5. RESULTS AND DISCUSSION

After the presentation of the adopted methodology, illustrative results are provided and discussed, starting with cases
that involve no flow heating effects. The first results examine the effects of the variation of the EDL thickness on the
Nusselt number, as presented in table 1 for different truncation orders (nmax) and different x, values, including the

limiting case with k) = oo, corresponding to the simple plug-flow solution. As can be seen, larger Nusselt values are

Table 1. Nuseelt values for different EDL thicknesses without flow heating in purely electroosmotic flow.

Mmax | €=0.001 £€=0.01 £=01 ¢=1 £=10[£=0.001 £=001 £=01 =1 £=10
0=0,ky=1,Br=0,Jo=0 0=0,k,=10,Br=0,Jo=0
51 17.6150 828696 4.05503 3.69963 3.69963 | 18.5656 10.8926 5.21033 4.80779 4.80779
10 | 19.5531 7.57838 4.04522 3.69510 3.69510 | 26.1289 10.0253 5.18070 4.79295 4.79295
20 | 16.5517 7.55356 4.04386 3.69448 3.69448 | 22.6511 9.92775 5.17564 4.79031 4.79031
40 | 16.4669 7.55030 4.04368 3.69440 3.69440 | 22.3612 9.91506 5.17493 4.78993 4.78993
60 | 16.4599 7.54996 4.04366 3.69439 3.69439 | 22.3336 9.91373 5.17486 4.78989 4.78989
80 | 16.4582 7.54988 4.04365 3.69438 3.69438 | 22.3267 9.91341 5.17484 4.78988 4.78988
100 | 16.4575 7.54985 4.04365 3.69438 3.69438 | 22.3243 9.91329 5.17483 4.78988 4.78988
12=0,k,=100,Br=0,Jo=0 O0=0,ky=00,Br=0,Jo=0
51 19.8513 12.6537 6.07839 5.67086 5.67086 | 20.1888 12.8103 6.17893 5.78319 5.78319
10 | 31.2008 12.8958 6.07732 5.67027 5.67027 | 31.6729 13.0686 6.17893 5.78319 5.78319
20 | 35.9207 12.8594 6.07576 5.66939 5.66939 | 37.1297 13.0687 6.17893 5.78319 5.78319
40| 35.0840 12.8292 6.07439 5.66862 5.66862 | 37.2975 13.0687 6.17893 5.78319 5.78319
60 | 34.8392 12.8204 6.07399 5.66839 5.66839 | 37.2975 13.0687 6.17893 5.78319 5.78319
80 | 34.7585 12.8173 6.07385 5.66831 5.66831 | 37.2975 13.0687 6.17893 5.78319 5.78319
100 | 34.7257 12.8161 6.07379 5.66827 5.66827 | 37.2975 13.0687 6.17893 5.78319 5.78319

obtained for thiner EDLs due to the larger velocities near the walls, which will lead to better heat transfer rates at these
locations. The maximum values naturally occur in the limiting plug-flow situation, and as the ) values are increased the
Nu values approach this limit, as expected. When comparing to traditional literature results, one notices that for k) = oo,
the fully-developed Nusselt values are in agreement with the well-known plug-flow value of 5.78.When looking into the
local convergence behavior of the solutions, one notices that better convergence rates are generally seen for positions
upstream. Moreover, the solution with k) = oo yields the best convergence behavior: as little as 40 terms are sufficient to
ensure a converged solution with six significant figures at the worst position (£ = 0.001) and only 5 terms yield the same
converge behavior for upstream positions. When examining the other cases, one can observe that the worst convergence
rate is seen for k) = 100, which may be attributed to the higher velocity gradient near the wall.

Next, table 2 examines the effects of the flow driving mechanism parameter (2) for the thin EDL limit, again, presented
for different truncation orders. Naturally, there is no need to present the limiting case of {2 = 0 for this case, since these
results have already been displayed in table 1. By observing the Nusselt values presented in this table, one clearly sees
that for small and large €2 values, respectively, the solution approaches the traditional Nusselt values seen in plug-flow
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Table 2. Nusselt values for different values of €2 with thin EDLs and no flow heating.

Nmax | £€=0.001 £€=0.01 £€=01 &=1 ¢&=101£=0.001 £€=0.01 £€=01 ¢=1 £=10
O=01,ky=00,Br=0,Jo=0 O=1,ky=00,Br=0,Jo=0

5 20.0762 12.5985 6.03041 5.63218 5.63218 | 19.3873 11.3115 5.25830 4.86027 4.86027
10 | 31.3389 12.7711 6.02945 5.63169 5.63169 | 29.0219 11.0304 5.25305 4.85771 4.85771
20 | 36.3175 12.7673 6.02933 5.63162 5.63162 | 31.0149 11.0116 5.25237 4.85736 4.85736
40 | 36.4156 12.7669 6.02931 5.63161 5.63161 | 30.8605 11.0095 5.25228 4.85732 4.85732
60 | 36.4144 12.7669 6.02931 5.63161 5.63161 | 30.8536 11.0093 5.25227 4.85731 4.85731
80 | 36.4141 12.7669 6.02931 5.63161 5.63161 | 30.8521 11.0092 5.25227 4.85731 4.85731
100 | 36.4140 12.7669 6.02931 5.63161 5.63161 | 30.8515 11.0092 5.25227 4.85731 4.85731
0 =10,ky =00,Br=0,Jo=0 )=00,Br=0,Jo=0

5 18.0710 8.97917 4.27116 3.90437 3.90437 | 17.5711 8.18315 4.01542 3.66175 3.66175
10 | 22.6659 8.28440 4.26239 3.90030 3.90030 | 19.2766 7.49769 4.00611 3.65747 3.65747
20 | 20.0844 8.26008 4.26119 3.89974 3.89974 | 16.3581 7.47393 4.00482 3.65688 3.65688
40 19.9910 8.25693 4.26103 3.89967 3.89967 | 16.2736 7.47084 12.2062 3.65680 3.65680
60 19.9826 8.25661 4.26101 3.89966 3.89966 | 16.2669 7.47052 4.00463 3.65680 3.65680
80 19.9806 8.25653 4.26101 3.89966 3.89966 | 16.2652 7.47044 4.00463 3.65679 3.65679
100 | 19.9798 8.25650 4.26101 3.89966 3.89966 | 16.2647 7.47041 4.00463 3.65679 3.65679

(5.78) and Hagen-Poiseuille flow (3.66), in the thermally developed region (§ = 10), as expected. Also, since a plug-
flow configuration yields better heat transfer rates, higher Nusselt values are seen for smaller {2 values. When analyzing
the convergence behavior of the presented results, one notices, again, that better convergence rates are generally seen
for positions upstream. Furthermore, if the convergence between the different cases are compared, it is seen that better
results are obtained for smaller values of €2, as these approach the plug-flow situation without increasing the wall velocity
gradient, differently than what occurred for £, = 100 in table 1.

The next results examine the effects of Joule heating for purely electroosmotic-driven flow with different EDL thick-
nesses. Table 3 displays Nusselt values calculated for different truncation orders for k, = 1 and k) = 10 and different
values of the Joule heating parameter. As observed from this table, the parameter Jo has the effect of increasing the
Nusselt number towards the fully developed region when compared to the cases without heating. It is also interesting to
note that, towards the fully developed region, the Nusselt values become independent of Jo, regardless of its magnitude.
With regards to convergence behavior, one notices that in downstream positions, the convergence rates are similar to those
seen in cases without flow heating effects; however, in upstream positions, the convergence rate is improved in cases with
Jo # 0. This is expected to occur since the employed filter solution is actually the fully developed solution for these cases.

After Joule heating, table 4 presents local Nu values calculated with different truncation orders for different values
of the EDL thickness parameter ) and different values of the Brinkman number. As can be seen, reducing the EDL
thickness increases the Nusselt number significantly, due to the higher velocity gradients at the wall. Nevertheless, this
augmentation is seen for all £ values only for the case with Br = 1; for lower Brinkman values the significant augmentation
in Nu is only seen for positions upstream, as also observed in the Joule heating cases. In fact, as the flow enters the fully
developed region, the calculated Nusselt value becomes independent of the value of Br, similarly to what was observed in
cases with Joule heating. This effect is in accordance with literature results for fully developed solutions. Finally, when
looking into the convergence behavior of the solution, similar observations made for the Nusselt results calculated with
Joule heating apply: in the downstream region, the convergence is similar to that of no-heating cases, while in upstream
region much better convergence rates are seen, which is again due to the fact that the filter solution for Br # 0 is the

actual fully-developed solution.
6. CONCLUSIONS

This paper presented a formal solution by the GITT to the extended Graetz problem, including the effects of viscous
heating, Joule heating, and flow actuation by means of pressure gradient and electroosmosis. The case of isothermal walls

was considered. Fully analytical solutions in terms of a matrix exponential are obtained for cases with negligible axial
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Table 3. Nusselt values in purely electroosmotic flow with Joule heating for different EDL thicknesses.

nIﬂaX

£€=0.001 £=001 ¢=0.1

E=1 ¢=10

€=0.001 £=0.01

£€=0.1

€=1 ¢=10

02=0,ky=1,Br=0,Jo=10"°

Q=0,k\,=10,Br=0,Jo=10"F

5] 17.6150
19.5531
16.5517
16.4669
16.4599
16.4582
16.4575

8.28696
7.57838
7.55356
7.55030
7.54996
7.54988
7.54985

4.05503
4.04522
4.04386
4.04368
4.04366
4.04365
4.04365

3.69965 6.03040
3.69512 6.03040
3.69450 6.03040
3.69441 6.03040
3.69441 6.03040
3.69440 6.03040
3.69440 6.03040

18.5656
26.1289 10.0253
22.6511 9.92775
22.3612  9.91506
22.3336  9.91373
223267 9.91341
22.3243  9.91329

10.8926

5.21033
5.18070
5.17564
5.17493
5.17486
5.17484
5.17483

4.80784
4.79300
4.79035
4.78998
4.78994
4.78993
4.78993

6.93156
6.93156
6.93156
6.93156
6.93156
6.93156
6.93156

0=0,ky=1,Br=0,Jo=10"1

O0=0,k),=10,Br=0,Jo=10""1

5] 17.6150
19.5531
16.5517
16.4669
16.4599
16.4582
16.4575

8.28698
7.57841
7.55359
7.55032
7.54999
7.54991
7.54988

4.05509
4.04528
4.04392
4.04374
4.04372
4.04372
4.04371

370153 6.03040
3.69700 6.03040
3.69638 6.03040
3.69630 6.03040
3.69629 6.03040
3.69629 6.03040
3.69629 6.03040

18.5656
26.1289 10.0253
22.6511 9.92777
22.3612  9.91508
22.3336 9.91375
22.3267 9.91343
22.3243  9.91331

10.8926

5.21038
5.18075
5.17570
5.17499
5.17491
5.17489
5.17489

4.81253
4.79773
4.79509
4.79472
4.79468
4.79467
4.79467

6.93156
6.93156
6.93156
6.93156
6.93156
6.93156
6.93156

Q=0,ky=10,Br=0, Jo= 1072
18.5664 10.8942 5.21594 5.19601 6.93156
26.1296 10.0270 5.18639 5.18487 6.93156
22.6519 9.92954 5.18135 5.18289 6.93156
22.3621 991685 5.18064 5.18261 6.93156
22.3344 991553 5.18057 5.18258 6.93156
22.3275 9.91520 5.18055 5.18257 6.93156
22.3251 991509 5.18054 5.18257 6.93156
N=0,ky,=10,Br=0,Jo=1

11.0481 5.71264 6.85616
10.2002 5.69032 6.85591
10.1051 5.68654 6.85586
10.0927 5.68601 6.85586
10.0914 5.68595 6.85586
10.0911 5.68594 6.85586
10.0910 5.68593 6.85586

Q=0,kr=1,Br=0,Jo= 102
51 17.6159 8.28926 4.06118 3.87551 6.03040
19.5542 7.58081 4.05139 3.87153 6.03040
16.5529 7.55600 4.05003 3.87098 6.03040
16.4681 7.55274 4.04985 3.87091 6.03040
16.4611 7.55240 4.04984 3.87090 6.03040
16.4593 7.55232 4.04983 3.87090 6.03040
16.4587 7.55229 4.04983 3.87090 6.03040
N=0,ky=1,Br=0,Jo=1
8.51449 4.61566 5.82036
7.81914 4.60836 5.82024
7.79508 4.60734 5.82022
7.79192 4.60721 5.82022
7.79160 4.60719 5.82022
7.79152 4.60719 5.82022
7.79149 4.60719 5.82022

6.93156
6.93156
6.93156
6.93156
6.93156
6.93156
6.93156

5| 17.7122
19.6615
16.6691
16.5847
16.5777
16.5760
16.5753

6.03040
6.03040
6.03040
6.03040
6.03040
6.03040
6.03040

18.6499
26.1982
22.7325
22.4435
22.4159
22.40901
22.4066

diffusion. The results demonstrated that the convergence behavior of the GITT is such that, for positions upstream, a high

convergence rate is seen, whereas near the channel entrance more terms are required in the truncated series.
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Table 4. Nusselt values with viscous heating in purely electroosmotic flow for different EDL thicknesses.
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