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Abstract. This study establishes a new procedure for selecting the control parameters in preconditioning methods used 
to simulate low Mach number compressible flows. The main parameter studied here is the pseudo speed of sound. Its 
formula is derived in the literature from an analysis of the governing equations at low Mach numbers, making sure 
their respective eigenvalues have the same order of magnitude. However, preconditioning is simply a mathematical 
tool used to remove stiffness from ill-conditioned systems of equations. Hence, one could obtain the optimal value of 
the pseudo speed of sound by minimizing the condition number of this system. In order to validate this novel 
methodology, several steady-state simulations were performed with explicit and implicit pseudo-time marching 
schemes as well as approximations for spatial derivatives with different accuracy orders. The results obtained were 
compared to the ones generated with the standard pseudo speed of sound used in the literature. Significant 
improvements in numerical stability and computer time are observed. 
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1. INTRODUCTION  

 
In fluid mechanics, the Navier-Stokes equations provide the most complete model for the study of compressible 

flows of Newtonian fluids. However, the main difficulty associated with the numerical simulation of these unsteady 
equations is the degradation of convergence at very low flow speeds. Whenever the Mach number is very small, there is 
a huge disparity between the convective and acoustic eigenvalues in this system of equations because the speed of 
sound is much larger than the convective velocity. Hence, time step size in time marching schemes is limited by 
acoustics instead convection, even though the former is not relevant in most low Mach number flows (Turkel, 1987). 
The significant increase in computational cost that follows is not the only problem that must be dealt with. Pressure 
gradients are inversely proportional to the Mach number square. Hence, pressure round-off errors are amplified at low 
Mach numbers, causing accuracy problems as well (Merkle and Choi, 1988). A few different techniques have been 
developed to minimize the problem of numerical stiffness and accuracy of compressible flow simulations at low Mach 
numbers. They enable the development of robust methods capable of dealing with flows at arbitrary Mach number. The 
present paper focuses on Preconditioned Density-Based methods. 

These methods deal with the problems mentioned above in two steps. First, they solve a set of primitive variables 
instead of the standard conservative ones. This set always contains pressure and velocity components but there are 
different possibilities regarding the last dependent variable, although it is usually temperature. Furthermore, pressure is 
split into hydrodynamic and thermodynamic contributions. The latter is usually constant whereas the former is the 
actual dependent variable. In doing so, round-off error propagation is dramatically reduced. This variable 
transformation follows a simple chain rule and generates a Jacobian matrix that multiplies the physical-time derivative. 
The second and final step modifies this matrix, forcing all eigenvalues to have the same order of magnitude. Hence, it 
essentially eliminates all stiffness issues related to the differences in acoustic and convective flow speeds. There are 
several different ways of specifying this modified matrix (Turkel, 1993; Turkel, 1999), known as preconditioning 
matrix, which introduces a few control parameters. They are the subject of the present paper.  
  
1.1. Low Mach Number Stiffness 

 
The eigenvalue disparity of the Navier-Stokes equations at low Mach numbers may be checked algebraically if one 

considers an inviscid and one-dimensional unsteady compressible flow, written as 
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where Q represents the standard conservative variables and Ei the inviscid fluxes, given by 
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and r is the density, u the flow velocity in the direction x and p is the pressure. Only perfect gases are considered in this 
study. Their equation of state is 

 
eRTp ργρ )1( −== ,                                                                                                                                                   (3) 

 
where e is the internal thermal energy per unit mass, obtained with 

 
TCe v= ,                                                                                                                                                                       (4) 

 
and T is the temperature, Cv the specific heat of gas at constant volume, k the coefficient of thermal conductivity, R the 
gas constant and γ is the ratio of specific heats. Finally, the total internal energy per unit mass E is given by 
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Using the chain rule allows one to re-write equation (1) as  
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where A is the inviscid flux Jacobian matrix defined as  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

∂
∂

∂
∂

+−
∂
∂

=
∂
∂

=

)E(
p1uH

)u(
puHpu

)E(
p

)u(
pu2up

010

Q
E 2i

ρρρ

ρρρ
A ,                                                                                                   (7) 

 
and, according to Fedkiw et al. (1997), the pressure derivatives above for thermally perfect gases are 
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with h representing the enthalpy per unit mass and H the total enthalpy per unit mass, defined as 
 

2
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The eigenvalues of matrix A provide the direction in which characteristic waves propagate information in this 

particular flow model given by equation (1). They are given by 
 

{ } { }cucuuA −+=→   ,  ,  ,  , 321 λλλ ,                                                                                                                        (10) 
 
where c is the speed of sound. 

Now it is clear why low Mach number flows, where u << c and the flow is dominated by convective time scales 
instead of acoustic ones, yield eigenvalues with vastly different magnitudes. These differences are responsible for the 
stiffness faced by time marching schemes, since the time step utilized is calculated with expressions such as 
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where L is a characteristic length, usually given by the local grid spacing, and CFL is the Courant-Friedrich-Lewy 
number, which relates the physicals velocities with the numerical ones ( tL Δ ). Hence, time steps are going to be 
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dictated by acoustic scales even though the convective scales are the most important ones at low Mach numbers. In 
other words, they are going to be dictated by numerical stability instead of accuracy considerations, drastically 
increasing computer times since the former imposes values that much smaller than the latter. 

 
1.2. Low Mach Number Preconditioning 
 

It is well known that density becomes independent of pressure at low Mach numbers. In the zero Mach number limit 
when the flow is incompressible, pressure gradients are important but not the pressure itself. Therefore, as previously 
mentioned, it is important to obtain pressure directly from the conservation equations rather than indirectly from an 
equation of state. This can be achieved by using the chain rule to re-write equation (1) as 
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where the Jacobian matrix T  that achieves this transformation is given by 
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and the chosen primitive variable vector Q̂  is  

}T,u,p{Q̂ H= ,                                                                                                                                                            (14) 
 
with p = pT + pH, where the new dependent variables pT and pH are the thermodynamic and hydrodynamic pressure 
contributions, respectively, with the former assumed constant in the present work. Hence, the spatial derivatives in the 
momentum equation depend only on pH. This additional modification is justified by the fact that pT  ~ O(ρc2) and pH  ~ 
O(ρu2) and is crucial to reduce the pressure round-off error propagation. 

The second necessary step to enable low Mach number simulations using the original conservation equations 
requires reducing the stiffness caused by eigenvalue disparity, as discussed previously. This can be better understood by 
looking at the thermally perfect gas relations 
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or, more specifically, at the density dependence on pressure. For an arbitrary real fluid, it is given by  
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according to Merkle and Choi (1987). Equation (12) still contains eigenvalues with vastly different values because the 
speed of sound c is still much larger than the convection speed u. This problem can be minimized if we replace the 
sound speed by a preconditioning velocity Vp in relation (16), effectively re-writing it as 
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which changes the Jacobian matrix T into the preconditioning matrix Γ given by  
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where Tρ is obtained from 
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and was introduced only to generate the preconditioning matrixes used by Venkateswaran and Merkle (1999), with 

0=δ , and Weiss and Smith (1995), with 1=δ .  
The impact caused by preconditioning the governing equations can be evaluated through the calculation of their new 

eigenvalues. In order to do this, one must re-write equation (12) as 
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where τ  represents a pseudo-time, since the correct physical-time t is lost upon preconditioning, and the new inviscid 
flux Jacobian matrix Â is given by  
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2

22

ρρρ

ρ
ρ

ρ

ρρρ

,         (21) 

 
noting that the total enthalpy derivatives can be obtained by combining relations (9) and (15). The eigenvalues of 
equation (20), in either one of its forms, are obtained from matrix Â1−Γ  to yield 
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clearly showing that as long as cVp << , low Mach number stiffness will be negligible. 
 
2. STANDARD PSEUDO SPEED OF SOUND 
 

The derivation above follows what is arguably the most used preconditioning method used in the literature, the one 
by Venkateswaran and Merkle (1999). According to this method, one should use 

 
}c,V{minV invp      = ,   where   2

inv uV = , (23) 
 

for steady inviscid flows. This formula guarantees two important features. First, VP is always positive, which means the 
mathematical nature of a flow will not be modified. In other words, if a flow is originally either parabolic or hyperbolic, 
it will remain so under preconditioning. Furthermore, it is not possible for compressible flows to be elliptic since a time 
derivative, with or without preconditioning, is always present. Second, this formula has a switch that reverts VP back to 
its original value when the flow is transonic. Nevertheless, it must be modified whenever stagnation points are present 
since the flow velocity approaches zero in such regions. For this reason, a stagnation velocity is defined as 

 



Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 

ρ
p

Vst
Δ

= ,             (24) 

 
where pΔ  is the local pressure difference. Relation (23) is then re-written as 

 
}c},V,V{max{minV stinvp           = .                       (25) 

 
3. OPTIMIZED PSEUDO SPEED OF SOUND 
 

The solution of algebraic systems can be obtained by different methods. Each one requiring multiplications between 
scalars and/or vectors and/or matrixes. These are composed of integer and/or real numbers that must be approximated 
by a finite number of digits, giving it what is commonly called machine precision. The propagation of these round-off 
errors is related to the number of basic algebraic operations performed by each method and, specially, to the condition 
number of the associated matrixes. The first source of error is minimized by an efficient implementation of each 
method, which reduces the number of basic operations, most importantly multiplications and divisions. The second one 
is problem dependent and is the main focus of the current paper. 

Given a generic algebraic system such as bx =⋅A , its condition number with respect to an infinity norm is  
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which essentially measures the sensitivity of a system to small perturbations. The values of )(A∞κ  go from one to 
infinity. One represents perfect conditioning, where perturbations will not be amplified at all throughout the algebraic 
operations. As this number gets higher, the system becomes more and more ill-conditioned. In extreme cases, round-off 
errors will be amplified to such an extent that accuracy degrades severely. The same happens to convergence whenever 
iterative or marching schemes are utilized. As the Mach number gets smaller, the discrete version of the compressible 
governing equations, obtained after applying a numerical solution method to it, becomes more and more ill-conditioned. 
This relationship between a numerical property and its physical origin arguably led all studies found in the literature to 
define control parameters for low Mach preconditioning methods, such as the pseudo speed of sound, following a 
dimensional analysis of the governing equations under different flow conditions. These studies always had the same 
basic goal: select the control parameters in such a way to force the well known eigenvalues of the compressible Euler 
equations to have the same order of magnitude. However, this problem is a numerical one and no relationship with the 
original physical properties of the flow should be necessary, only its mathematical nature must be maintained. Hence, 
this basic goal can be refined: select the value of VP that minimizes the condition number ∞κ . 

An algebraic system of equations is obtained at each grid point whenever explicit time marching schemes are 
chosen. Its size depends only on the number of differential equations being solved. This leads to 
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where Γ is the same preconditioning matrix defined in (18). An analysis of ∞κ shows a single global minimum that 
varies little throughout the grid, giving VP a smooth spatial distribution. 

Even though multigrid strategies and parallelization are easier to implement with explicit marching schemes, 
implicit ones should be used instead because they are more efficient at driving a solution to steady-state. Whenever 
doing so, the algebraic system ceases to be decoupled and one should look at all grid points simultaneously. Hence, 
their size depends on the number of grid points utilized. This usually leads to block tri-diagonal systems for one-
dimensional problems because they can be solved more efficiently. However, minimizing equation (26) for such a 
system is very inefficient and an alternative path must be followed. This starts with the fact that these tri-diagonal 
systems are very often diagonally dominant. Furthermore, a block diagonal system would be obtained in the theoretical 
limit of maximum diagonal dominance. The condition number of such a system is simply the maximum value among 
the condition numbers of each block diagonal element. It will be minimized whenever the condition number of each 
element is minimized. Hence, one could say that equation (27) is still a valid approximation for multi-diagonal systems 
as long as they are diagonally dominant. 

 
 4. NUMERICALS EXPERIMENTS 

 
Preliminary results were generated for a quasi-1D flow inside a diffuser. Explicit and implicit Euler methods were 

used for pseudo-time marching from an initial condition consisting of a uniform flow with M = 10-3. Spatial resolution 
was obtained with a first-order upwind scheme based on preconditioned flux difference splitting. Our novel 
methodology is compared with the one derived by Venkateswaran and Merkle (1999) and widely used in the literature. 
These curves were generated with their respective optimal CFL numbers in terms of computer time. 
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Figure 1. Mach Numbers inside diffuser for the explicit Euler scheme with different grid sizes: Nx = 61 and 241. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Mach Numbers inside diffuser for the implicit Euler scheme with different grid sizes: Nx = 61 and 241. 
 
 

First, steady-state solutions for the Mach number spatial variation are shown in Figures 1 and 2, obtained with the 
explicit and implicit Euler method, respectively. These figures show differences, although very small, between the 
solutions generated with traditional and novel pseudo speeds of sound. This is somewhat expected since first-order 
schemes are used in space. Their high levels of numerical dissipation have a significant impact on solution accuracy 
through the magnitude of the preconditioned eigenvalues.  
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Figure 3. Pressure increment decay with computational time for the explicit Euler scheme with Nx = 61. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Pressure increment decay with computational time for the explicit Euler scheme with Nx = 241. 
 

Now it is possible to compare convergence rates from both methodologies when explicit Euler marching in pseudo-
time is utilized. This is an important test since the optimized pseudo speed of sound was derived for this particular 
scheme. Results are shown in Figures 3 and 4, generated with Nx = 61 and 241, respectively. Enhanced numerical 
stability is clear, specially at the initial transient, and leads to higher CFL numbers and, hence, dramatic improvement of 
convergence rates. They also increase as error tolerances decrease but decrease as grid size decreases. 



Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Pressure increment decay with computational time for the implicit Euler scheme with Nx = 61. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Pressure increment decay with computational time for the implicit Euler scheme with Nx = 241. 
 

Finally, these same comparisons are made when implicit Euler marching in pseudo-time is utilized. This is an 
important test because implicit marching is the usual choice in the literature because it leads to faster convergence 
towards steady-state, when compared to explicit marching schemes. However, it should be noted again that the optimal 
pseudo speed of sound calculation in only approximate for this scheme. Despite this shortcoming, the novel 
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methodology actually performs better with this implicit marching scheme than with its explicit counterpart. Lets 
consider machine precision error tolerance results. The optimized pseudo speed of sound leads to an approximate 
1000% decrease in computer time when compared to its traditional formulation for explicit marching with Nx=61. This 
number increases to approximately 2400% when implicit marching is used instead. When the number of grid points 
used increases to Nx = 241, this improvement is decreased by about 3 times for both marching schemes. Furthermore, 
there is a small difference between machine precision errors generated with both methodologies with a smaller grid. 
This is likely due to the excessive dissipative errors introduced by the first-order scheme in space, since it disappears 
when the number of grid points used increases to Nx = 241. 
 
4. CONCLUSION 

 
This paper presented a novel formulation for the pseudo speed of sound used in low Mach number preconditioned 

density-based methods. Significant improvements in performance were obtained when compared to a traditional and 
well known formulation commonly used in the literature. These preliminary studies show that it is worth pursuing this 
approach and extending it to different test cases, such as transient and viscous problems not only in one but also more 
spatial dimensions. 
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