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SLUG FLOW PREDICTION WITH THE VOLUME OF FLUID MODEL 
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Abstract. Numerical simulation of a single unit slug was performed with the VOF model. The slug translation velocity 
was obtained and the coefficients of the Bendiksen equation were adjusted to fit all cases. The computed velocity was 
compared with the experimental data obtained with PIV and Laser Doppler anemometer. It can be said that a very 
good agreement was obtained. 
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1. INTRODUCTION  
 

Multiphase flow is very common in the petroleum industry and depending on the phase’s superficial velocities 
during its transport, different flow patterns can be found, such as “smooth stratified”, “wavy stratified”, “elongated 
bubble”, “slug”, “annular”, “chaotic”, “bubble”, etc. One of the most common flow patterns during operation in 
petroleum processing facilities is the “slug” pattern. There have been many attempts in the literature to model a two-
phase slug flow. One of the first models, presented by Wallis (1969), is based on the concept of the single unit slug with 
a reference frame moving with the tip of the bubble. Later, Taitel and Barnea (1990) using the same concept, divided 
the single unit slug into two parts: the liquid slug and liquid film zones. Fagundes Netto et al. (1999) developed a model 
based on mass and momentum conservation equations to predict the shape of the tip and tail of the gas bubble, as well 
as the liquid slug, and presented a comparison with experimental data. Taitel et al. (2000) showed that a negative pipe 
inclination damps slug formation. Orell et al. (2004) used a sub-model of Taitel and Barnea (1990) model, and obtained 
an increase of the pressure loss, obtaining good results in agreement with experimental data. De Freitas et al. (2008) 
applied the single unit slug concept through a vertical pipe and studied the effect of gas expansion. Several codes have 
been developed and are widely used, such as PLAC (Black et al., 1990) and OLGA (Bendiksen et al., 1991). 

Bendiksen (1984), Cook and Behnia (2000) and Bertola (2002) among others have investigated experimentally slug 
flows, focusing on global measurements such as pressure drop, overall void fraction and statistical parameters such as 
slug length distribution, slug frequency and film thickness. Probably due to the complex nature of the slug flow pattern, 
relatively few papers were found reporting results on detailed measurements of the flow field in the liquid slug and film 
layer under the gas bubble. Detailed information on the flow behavior is critical to the proper understanding of the 
physical mechanisms governing the flow. 

Numerical simulation has became a very important tool to predict multiphase flow inside pipelines due to the 
worldwide increasing fuel demand  for industry, as well as higher standard requirements for equipment design for 
petroleum processing and transport. For an efficient equipment or pipe design, it is desired to determine the individual 
hydrodynamic characteristics of each flow pattern, such as pressure drop and flow intermittence parameters. 

In the present work, the commercial CFD software FLUENT™ was employed to solve numerically the air/water 
two-phase slug flow with the single unit slug approach. The results such as bubble shape and film velocity profiles were 
compared with measured data presenting good agreement. 
  
2. MATHEMATICAL MODEL 
 

To determine the two-phase slug flow field inside a horizontal pipeline, the VOF (volume of fluid) model (Hirt and 
Nichols, 1981) was selected. The VOF model is based on the solution of one single set of conservation equations of 
mass and momentum. An auxiliary variable, named “volume fraction” i, is considered to identify the region occupied 
by each phase, it is equal 1 in one phase and zero in the other one. The sum of volume fractions is equal to 1, i.e.,          


g + ℓ =1.  (1) 
. 
All variables and properties fields are shared by both phases, and they represent average values. Density and 

viscosity are obtained as follows:  
 
 =g g + ℓ ℓ                  (2) 
 
 =g g + ℓ ℓ (3) 
 
The interface tracking is determined by assuming a material derivative of the interface equal to zero for a referential 

on the interface, thus 
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where u


is the time average velocity vector.  

The Reynolds average continuity and momentum conservation equations can be written as 
 

    0



uu
t


  (5) 

 

    FgSgpuuu
t ef





  ][ 2          )(; TuuS




2

1
 (6) 

 
where p is the pressure, g


 is the gravity acceleration vector, ef =  + t is the effective viscosity, t is the turbulent 

viscosity, S  is the mean rate of strain tensor and F


 is an external force which takes in account the effects of surface 

tension (gℓ) of two phases. 
The external force term based on the CSF model (Continuum Surface Force) developed by Brackbill et al. (1992) 

based on the interface curvature  is added to the momentum equation to account the effects of surface tension of two 
phases.  
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The turbulence was modeled with the  RNG model (Yakhot et al., 1992). For high Reynolds number, the 

turbulent viscosity is 
 

084502 .;/    CCt  (8) 

 
where is the turbulent kinetic energy and  its dissipation rate, and are obtained from the following transport 
equations: 
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In these equations, G represents the generation of turbulence kinetic energy due to the mean velocity gradients. The 
destruction of  depends on  = S . The empirical constants are: C1 = 1.42, C2 = 1.68, o = 1,  = 0.012 and          
0 = 4.38. k and are the inverse Prandtl numbers for  and respectively, obtained from the following expressions: 
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To predict a single unit cell, a reference frame moving with the bubble was employed. Therefore, at the pipe wall a 

slug translational velocity was prescribed. At the entrance of the domain, the mixture velocity was imposed as 
Wm=wsℓ+wsg, where wsℓ and wsg are the liquid and gas superficial velocities, relative to the wall. The entrance turbulent 
quantities were  

 
223 )()/(  mW and cC /// 2343   ,  (12) 

 
with ζ=0.05 and ℓc =0.07 D. At the exit a constant pressure was prescribed. 
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The bubble nose shape can be evaluated through the axial zp and radial yp penetration of the bubble in the liquid 
slug, measured as indicated in Fig. 5. These quantities are presented in Fig. 6 as a function of the mixture velocity. Note 
an increase in the radial penetration with an increase of the mixture velocity, as observed experimentally by (Bendiksen, 
1984, Rosa et al., 2004). It can also be seen an inclining of the bubble nose in the direction of pipeline center with an 
increase of the mixture velocity. The variation of yp with the mixture velocity is small, although small Wm was analyzed.  

 

 

Figure 5. Axial and radial penetration of an elongated bubble. 

                
a) Radial penetration    b) Axial penetration 

Figure 6. Radial and axial penetration. 

Figure 7 presents a comparison of present results and the measured velocity profile with the PIV technique (Fonseca 
Jr, 2009) corresponding to Case 1 and 4. A similar configuration is obtained, where it can be seen that the bubble nose 
is oriented downward, agreeing with previous experimental observation of Bendiksen (1984). However, the numerical 
inclination is quite small. Further, the numerical simulation predicted a more round nose than observed experimentally. 
It can also be seen in the experimental data an increment in the axial and radial penetration with the increase of the 
mixture velocity, however, this behavior was not observed numerically. 

 
                               Wm = 1.3 m/s, Frc= 1.06.                                                   Wm = 0.77  m/s, Frc= 0.6. 
 

       
 

 (a) Experimental. Fonseca Jr. (2009). (b) Numerical. (c) Experimental. Fonseca Jr. (2009). (b) Numerical  
Figure 7. Bubble tip shape.  

To visualize the bubble shape, it is shown in Fig. 8, contours of the volume fraction at five cross section for Case 1. 
The bubble presents an oval cross section, which gets flatter along the bubble length. Note that the bubble is squeezed 
and pushed to the upper part of the pipeline. It can be also be seen that at z = - 0.8 D, the bubble touches the wall and 
the liquid film above it disappears. 

             
                  z= – 0.8 D                  z= – 0.6 D                  z= – 0.4 D                       z= – 0.2 D                z=  0.0 D 

Figure 8. Volume fraction contours at different cross section. Case 1 
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Axial velocity profiles were obtained along nine vertical lines located at coordinates from -0.8D to 0.8D relative to 
tip of the bubble (0.0D), as shown in Fig. 9. The coordinates with negative signal will be called from now on 
“upstream” and coordinates with positive signal will be called “downstream”.  

 

 
Figure 9. Data Acquisition positions 

Detailed results of selected cases are presented here. Figures 10 through 12 show the velocity profiles upstream of 
the bubble nose, corresponding to the selected Cases 2, 3 and 4, respectively. Experimental data is presented with 
symbols while numerical results are plotted with continuous lines.  

Analyzing Figs. 10-12, it can be seen that there is no experimental data in the gaseous phase, because tracing 
particles were introduce only in the liquid phase. Due to the smaller viscosity, the gas velocity presents a smaller 
inclination at the wall, leading to much higher velocities than the liquid phase. An excellent agreement between 
numerical and experimental data was obtained in the liquid region. However, it can be observed a local reduction on the 
experimental liquid velocity profile near to the interface. This behavior was not predicted numerically, where a smooth 
transition from the liquid velocity to the gaseous velocity profile is was obtained. It can also be seen that the maximum 
gas velocity increases as one moves upstream, while the maximum liquid velocity diminishes, agreeing with the 
experimental data.  

 

       (a) z = – 0.6 D                               (b) z= – 0.4 D                     (c) z= – 0.2 D                      (d) z=  0.0 D 

Figure 10: Axial velocity profile, upstream bubble nose. Case 2 

   

       (a) z = – 0.6 D                               (b) z= – 0.4 D                     (c) z= – 0.2 D                      (d) z=  0.0 D 

Figure 11. Axial velocity profile, upstream bubble nose. Case 3 

 

       (a) z = – 0.6 D                               (b) z= – 0.4 D                     (c) z= – 0.2 D                      (d) z=  0.0 D 

Figure 12. Axial velocity profile, upstream bubble nose. Case 4 
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