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Abstract. The goal of this work is to propose a new methodology to sitaularbulent thermal wall flows, using the
classicalx — e model. The focus of this approach is based on the manner asexgbtement heat flux boundary conditions
using wall laws. In order to explain and to validate this negaithm several test cases are used, testing a great rahge o
flows in order to analyze the numerical response on varioysighl aspects of the fluid flow. The proposed approach uses
simultaneously a thermal law of the wall, an analogy betwfagd friction and heat transfer rates and an interpolating
polynomial relation that is constructed with a data baseeayated on experimental research and numerical simulation.
The algorithm used to execute the numerical simulationdiepthe classicak — ¢ model with a consolidate Reynolds
and Favre averaging process for the turbulent variablese fthibulent inner layer can be modeled by four distinct vigyoc
wall laws and by one temperature wall law. Spacial discedton is done by P1 and P1/isoP2 finite elements and the
temporal discretization is implemented using a semi-iai@equential scheme of finite differences. The presselmeity
coupling is numerically solved by a variation of Uzawa’'s@ighm. To filter the numerical noises, originated by the
symmetric treatment to the convective fluxes, it is adopteslance dissipation method. The remaining non-lineasitie
due to explicit calculations of laws of the wall, are treatgda minimal residual method.
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1. INTRODUCTION

Thermal turbulent flows over solid surfaces occur in manyasibns of industrial interest and the thermal boundary
conditions imposed on the boundaries of the computationgingay be of two types: temperature and/or heat flux. The
second condition is more usual in real problems and it bréogse additional difficulties to its numerical treatment.

According to Chen and Jaw (1998) the high Reynaldse model is the most used turbulence model in the treatment
of industrial flows. To model the behavior of the flow in theeirtal region of the turbulent boundary layer, the- ¢
model uses analytical expressions known as wall laws. The dificulty in simulating a thermal turbulent flow with a
heat flux boundary condition on the wall using the high Regiasl— ¢ model is the absence of a heat flux wall law.

The method that we propose to solve this inconvenience ialtulate the coefficient of heat transfer by convection
h, along the solid boundary, and use its value to convert aémg heat flux on an equivalent wall temperature. This
information is then sent to a temperature wall law that dates the temperature boundary condition in the nodes glace
on the border of computational grid.

The main difficulty is to estimate, with a good accuracy, thenerical values of the heat flux convection coefficient,
since it depends strongly on the flow and in features like lieenbodynamic properties of the fluid, the solid geometry
in which the flow occurs and in the flow Reynolds number. In thisk, for non-detached boundary layers, the values
of h are calculated with the use of analogies between fluid énctind heat diffusion. For detached boundary layers the
calculation is done using an interpolating polynomial tieta

The good performance of classical analogies used to céécideat transfer rates on flat plates was shown by Gontijo
and Fontoura Rodrigues (2006). The problem of using anedolgétween fluid friction and heat diffusion in detached
boundary layers was discussed in the work of Gontijo anddtoatRodrigues (2007). An original approach based on the
use of analogies for solving the problem of imposing heat floxndary conditions on the high Reynolds- ¢ model
was first presented by Gontijo and Fontoura Rodrigues (280&)yn evolution of this method was shown by Gontijo and
Fontoura Rodrigues (2009). The present work shows how thisand original method can be used to simulate thermal
turbulent flows with heat flux boundary conditions over diffiet geometries.

The solver used to execute the simulations, named Turbo2B résearch Fortran numerical code, that has been
continuously developed by members of the Group of Compleid@Dynamics - Vortex, of the Mechanical Engineering
Department of the University of Brasilia, in the last tweydars. This solver is based on the adoption of the finite ei¢sne
technique, under the formulation of weighted residualppsed by Galerkin, adopting in the spatial discretizatibtihe
calculation domain with the triangular elements of the tideand P1-isoP2, as proposed by Brison, Buffat, Jeandel and
Serres (1985). The P1-isoP2 mesh is obtained by dividinig elgenent of the P1 mesh into four new elements. In the P1
mesh only the pressure field is calculated, while all therdiimbulent variables are calculated with the P1-isoP2 mesh

Considering the uncertainties normally existing aboutitiiteal conditions of the problems that are numerically sim
ulated, it is adopted the temporal integration of the goveyequations system. In the temporal integration prodesss t
initial state corresponds the beginning of the flow and thal fitate occurs when stop the temporal variations of the ve-
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locity, pressure, temperature and other turbulent vaggmbh order to reach the final state a pseudo transient octlies
temporal discretization of the governing equations is anptnted by the algorithm of Brun (1988) witch uses a seqalenti
semi-implicit finite differences method with truncation@rof order0(At) and allows a linear handling of the equation
system, at each time step.

The resolution of the coupled equations of continuityandmaotum is done by a variant of Uzawa'’s algorithm,
proposed by Buffat (1981). The statistical formulatiorspgensible for the obtaining of the system of average egustio
is done with the simultaneous usage of the Reynolds (183bawre (1965) decomposition. The Reynolds stress tensor
is calculated by the: — € model, proposed by Jones and Launder (1972) with the motiéfitaintroduced by Launder
and Spalding (1974). The turbulent heat flux is modeled agedlly using the turbulent Prandl number with a constant
value of 0,9.

In the program Turbo 2D, the boundary conditions of veloaity temperature can be calculated by four velocity and
two temperature laws of the wall. The velocity laws of thelwsled in this work are: the classical logarithm law, and
the laws of Mellor (1966), Nakayama and Koyama (1984), anaz@nd Silva Freire (1998). The temperature law of
the wall used is the Cheng and Ng (1982) law of the wall. Theemnigal instability resultant of the explicit calculation
of the boundary conditions of velocity is controlled by thgaithm proposed by Fontoura Rodrigues (1990). The
numerical oscillations induced by the Galerkin formulaticesultant of the centered discretization applied to alpalic
phenomenon, that is the modeled flow, are cushioned by thaitpee of balanced dissipation, proposed by Huges and
Brooks (1979) and Kelly, Nakazawa and Zienkiewicz (1978@hwhe numerical algorithm proposed by Brun (1988).

In order to quantify the wideness of range and the consistefithe numerical modeling done by the solver Turbo
2D, the wall heat fluxes obtained numerically are comparedaexperimental data of Vogel and Eaton (1985) and two
gualitative test cases were proposed based on the worksicé Bnd Eaton (1995) and Loureiro et. al (2007).

2. GOVERNING EQUATIONS

In this work all the dependent variables of the fluid are gdads a time average value plus a fluctuation of this
variable, in a determinate point of space and time. In or@ctount variations of density, the model used applies the
well known Reynolds (1985) decomposition to pressure and flansity and the Favre (1965) decomposition to velocity
and temperature. In the Favre (1965) decomposition a raizeéageneric variable is defined as:
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Applying the Reynolds (1895) and Favre (1965) decompastio the governing equations and taking the time aver-
age value of those equations, we obtain the mean Reynoldsieqs:
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In this system of equationsis the fluid density is the time,z; are the space cartesian coordinates in tensor notation,
u is the dynamic viscosity coefficient;; is the Kronecker delta operatgy, is the acceleration due to graviy, is the
fluid temperaturey; is the flow velocity ,k is the thermal conductivityy is the fluid pressure. In these equations the
tilde denotes the time-average of a quantity whereas quotatarks denotes the fluctuation of a quantity in the sense of
Favre (1965) decomposition. Similarly, overbar denotestifme-average of a quantity in the sense of Reynolds (1985)
decomposition. Ther is the molecular thermal diffusivity and two news unknowraqtities appear, respectively, in the
momentum (3) and in the energy equations (5), defined by threlations between the velocity fluctuations, the so-dalle
Reynolds Stress, given by the tensgiu;u//, and by the fluctuations of temperature and velocity, theaded turbulent

heat flux, defined by the vecterpu//T".
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The Reynolds stress of turbulent tensions is calculatedhéy: t— < model, proposed by Jones and Launder (1972)
with the modifications introduced by Launder and Spaldiriyd), where suggest
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The turbulent heat flux is modeled algebraically using thbulent Prandl numbePr, equal to a constant value of
0,9 by the relation

e 0T
Pr: 0x;

In the equation (9, is a constant of calibration of the model, that val0e89, « represents the turbulent kinetic
energy and is the rate of dissipation of the turbulent kinetic energgc®thats ande are additional variables, we need

to know there transport equations. The transport equatibrsande were deduced by Jones and Launder (1972), and
the closed system of equations to the- ¢ model is given by:
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with the model constants given by:
C,=009,Cqh=1,44,C2=1,92,C3=0,288,0,=1,0.=1,3, Pry=0,9.

3. WALL FUNCTIONS

Thex — e turbulence model is incapable of properly representindgiménar sub-layer and the transition regions of the
turbulent boundary layer. To solve this inconvenience siblation adopted in this work is the use of wall laws, capable
of properly representing the flow in the inner region of thdtlent boundary layer.

There are four velocity and two temperature wall laws impated on Turbo 2D. The laws used in this simulation are
shown bellow, except for the classical log law that furthgrlanations are unnecessary.
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3.1 Velocity wall law of Mellor (1966)

Deduced from the mean equation of Prandtl for the turbuleondary layer and considering the pressure gradient
term for integration, this wall function is a primary appecbao flows that suffer influence of adverse pressure graslient
Its equations are, respectively, for the laminar and tunbidegion

* * 1 * *
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where the asterisk upper-index indicates dimensionleastgies of velocityu*, pressure gradiept: and distance to the
wall y* as functions of scaling parameters to the near wall regiois ke Von Karman constant argg- is Mellor’s
integration constant which is function of the near-wall dimsionless pressure gradient.
For calculations purposes the intersection of both regosnsidered to be the same as the log law expressions where
y* = 11, 64. The relations between the dimensionless near wall priggeand the friction velocity.; are:
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The friction velocity is calculated by the relation:
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In equation (21) the terrg,- is a value obtained from the integration process proposédeiipr (1966) and is a func-
tion of the dimensionless pressure gradient. Its valueslata@ned through interpolation of those obtained expeniaiéy
by Mellor, shown in Tab. 1.

Table 1. Mellor’s integration constant (1966)

p* | —0.01 | 0.00 | 0.02 | 0.05 | 0.10 | 0.20 | 0.25 | 0.33 | 0.50 | 1.00 | 2.00 | 10.00
& | 492 | 490 | 494 | 5.06 | 5.26 | 5.63 | 5.78 | 6.03 | 6.44 | 7.34 | 8.49 | 12.13

3.2 Velocity wall law of Nakayama and Koyama (1984)

In their work Nakayama and Koyama (1984) proposed a deonati the mean turbulent kinetic energy equation, that
resulted in an expression to evaluate the velocity nead bolindaries. Using experimental results and those olathiyne
Strattford (1959), the derived equation is
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whereK* is the expression for the Von Karman constant modified by thegnce of adverse pressure gradieritss a
dimensionless shear stre6s= 5.445 is the log-law constant and the paramétgis a value of t at positiog™ .

3.3 Velocity wall law of Cruz and Silva Freire (1998)

Analyzing the asymptotic behavior of the boundary layer flowler adverse pressure gradients, Cruz and Silva Freire
(1998) derived an expression for the velocity in the inngiar of turbulent boundary layer. The solution of the asyotipt
approach is

2
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where the sub-indey indicates the properties at the wall, K is the Von Karman tamsL. is a length scale parameter
anduy is the friction velocity.

The proposed equation for the velocity, equation (26), Haehavior similar to the log law far from the separation and
reatachment points but, close to the separation pointadwglly tends to Stratford’s equation (1959).

3.4 Temperature wall law of Cheng and Ng (1982)

In this work only one of the two temperature wall laws implertesl in the Turbo 2D code is used. For the calculation
of the temperature Cheng and Ng (1982) derived an exprefsidhe near wall temperature similar to the logarithmic
law of the wall for velocity. For the laminar and turbulengiens, the equations are respectively

(To —1 )y (To —T) 1 . Uy
— Y P d Y = In(y™) + th y* =22 27
T y* Pr an T Kng n(y*) +Cng Wi Y ; (27)

whereTj is the environmental temperatugeis the normal distance up to the walljs the cinematic viscosity arifl; is
the friction temperature, as defined by Brun (1988)

1 1 1 oT
Ty =— — 28
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and the friction velocityu ;s is calculated by the relation

The intersection of these regions arg/at= 15, 96 and the constant& 7, andCy, are, respectively), 8 and12, 5.

4., FORMULATION OF A NEW METHOD TO IMPOSE HEAT FLUX BOUNDARY CO NDITIONS IN THE
x — & MODEL

As discussed before the imposition of a heat flux boundarglitiom in a high Reynolds turbulence model, such as
the classicak — ¢, requires a special treatment since there are no heat fluxumations available. This work proposes a
new method to solve this inconvenience. The main idea isédhes Colburn (1933) analogie, equation (30), to estimate
the Stanton number for non-detached boundary layers.

St = <1 (30)
2Prs
whereC f, is the local friction coefficient and the local Stanton numisn be evaluate by
qax oT
St, = where, for a flat plate, ¢, = —k <—) . 31
PCptioo (T — T) P dy y=0 1)

If there is an unheated starting length, so the thermal baynidyer begins its development under a pre-existing
velocity boundary layer and an adjustment is necessaryk iteo account this peculiarity of the flow. The adjust
proposed by Kays and Crowford (1993) can be done on equa@&®nésulting in the equation (32),

Cra <5u)%
Sty = = (Zw) 32
2Prs \Or (32)

whered,, anddr denotes, respectively, the thickness of the velocity bamthyer and of the thermal boundary layer.

In equation (31) an accurate calculation of the temperajtadient is a difficult task since the use of laws of the wall
produce the loss of some information in the wall region. Qadther and, this difficulty can be avoided by employing
the equations (30) or (32), where the local friction coediitiC f, is calculated with the use of the friction velocity,
equation (29), numerically calculated by the Turbo2D casle a

Cre _ Tw with = pu? S0 Cp =20 33)
9 - pugo Tw = puf fx = Ugo

By these calculations it is possible to estimate, with a gamiracy, the heat transfer rates in turbulent flows where th
boundary layer is well structured, for example, in flows dierplates and other geometries that don’t generate boyndar
layer detachment.
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The problem in using this formulation happens when we arstlye flow inside or at downstream of a recirculation
region, where the boundary layer is not well structured &edise of analogies is not a viable alternative. In thesescase
Gontijo and Fontoura Rodrigues (2009) developed a polyabexipression using the previously experimental study of
Vogel and Eaton (1985), that studied a turbulent flow overadubackward facing step that had a condition of a constant
heat flux imposed on its lower wall. The relation obtainedxisressed by equation (34)

St (z*) = 0,00106 + 0,009122* — 0,008952* + 0, 002332, (34)
with
ot= 2% (35)
Ty — T4

wherex defines the local coordinate in the flow directief,is the detachment point and is the attachment point.
Expression (34) presents good results in other geometiifées,ent from the backward facing step, such as the asym-
metric plane diffuser of Buice and Eaton (1995) and the stbitin an open channel of Loureiro et. al (2007).

5. RESULTS

Several test cases were used to validate this methodologrger to show its generality. First it is shown the good
performance of the analogies in cases where there is no bogtayer detachment. Following are addressed problems of
using classical analogies when the boundary layer is ndtstrekctured. Thereafther are shown the arguments taken int
account to develop a new approach to calculate the Stantobewinside a recirculation region and finally, this apploac
is tested for different geometries that induce the bountgmsr detachment.

5.1 Use of analogies on flat plates with unheated starting Igiths and low temperature gradients

Firstitis shown the performance of the Colburn analogi@@estimation of the local Stanton number for four different
test cases, based on the experimental works of Taylor e1980). In this work the authors made several measurements
of the local Stanton number over a heated flat plate. The plade, 4m long. The flow is two-dimensional and the
velocity of the free stream flow iE., = 28m/s. The results presented in figure (1) shows the behavior ofdiierent
test cases, varying the initial unheated starting lengite mMain idea of this work is to evaluate the influence of a tlaérm
boundary layer starting over a developed velocity bounttargr in the behavior of the heat transfer rates over a plate
with low temperature gradients. In these cases there iderelifce ofl8 K between the temperature of the plate and of
the free stream flow. The numerical P1/isoP2 mesh used tagxde simulations had 18447 nodes and 35872 elements.
In this case the wall law used for velocity was the classiatagm law and for temperature the wall law of Cheng and
Ng (1982), since there are no significative pressure gréglietposed by this simple geometry. The numerical value of
the local Stanton number was calculated by two differentsyaging the equations (31) and (32) called in figure (1),
respectively, numerical 1 and numerical 2. It is possibladtice that the use of the Colburn (1933) analogie calcdlate
by equation (32) produces better results. The explanatiothis behavior consists on the fact that the derivatives of
temperature in the normal direction of the plate are not eegurate, since the use of a high Reynolds model restrict the
numerical simulation to a certain distance above the wallthis is accompanied by a loss in the quality of results.

5.2 Analogies in an isothermal flat plate with high temperatue gradients

In order to validate the use of the Colburn (1933) analogigrablems where the temperature and velocity fields are
coupled due to a high temperature gradient, was made a giorutaf a problem first studied by Ng. (1981). In this
test case a flat plate 6f25m long, heated in a constant temperaturé 250 K, receives a flow of air with a free stream
velocity of 10, 7m/s and with a uniform temperature @B3K. In this work the variation range of the local Reynolds
number is placed betweér) 105 < Re, < 7.8 10°. There is a difference ¢f57 K between the temperature of the plate
and of the free stream flow. It was used a P1/isoP2 mesh with 6d8es and 12672 elements. The simulation was done
only with the classic wall law for velocity and the wall law 6heng and Ng (1982) for temperature. Figure (2) shows the
variation of the local Stanton number through the plateuwdated by the same way as those from the Taylor et. al (1990)
test case. The behavior observed is the same, the use of thenC¢1933) analogie calculated by equation (32) is the
best option to estimate the heat transfer rates. As expdbttedihcrease in the intensity of temperature gradientsasak
the results obtained with equations (31) becomes moreumatin the immediate vicinity of the wall.

5.3 The use of analogies in a recirculation region

To check the behavior of the heat transfer rates inside ecrdation region and the performance of analogies in this
situation, it was selected a test case based on the worksofti al (1992). In this test case, artificial roughness etem
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called "ribs", are used to induce the flow separation, irginggthe turbulence levels and, by consequence, the haatdéra
rates. The ribbed channel studied in this work presents adteéy number of 12600. The velocity on witch the Reynolds
number was calculated &4m /s and the height of the rib i8.008m. The P1-isoP2 mesh used on the simulations had
3739 nodes and 7200 elements. In the experimental work af éioal (1992), the rib was made of aluminum and it was
heated by a thermal film in its underside, providing a conditf constant heat flux. The top part of the channel was
insulated, so an adiabatic wall was created. The heighteofithrepresents twenty percent of the height of the channel.
Figure (3) shows the behavior of the heat transfer rategalmchannel.

In this work the wall heat flux is calculated in the non dimensil form of the Nusselt number, that for a channel can
be calculated by the following relation:

_ 2q,PrH
Ncp (Tw - Tbulk)
In the equation abovéyu, represents the local Nusselt numlgris the local heat fluxPr is the Prandtl number of

the fluid, H is the height of the channel, afig is the temperature of the wall. Combining equation (36) \thth Colburn

(1933) analogie, equation (31), and with the definition &f lical Stanton number, where the bulk temperature may be
taken as

Nuy, (36)

Tw + T
Tyuik = —3 (37)

it is possible to establish a relation between the local Blussimber and the friction velocity as

APriv? H
Nu, = —————. (38)
Voo

The values ofVu,, shown in Figure (3), are the local Nusselt numbers for a cblanrithout the presence of the Ribs,
calculated by the Dittus-Boeltter equation. Itis posstblebserve a good agreement between numerical and expéaimen
data in non detached regions (places A, B and C). Inside tiewation zones, the use of the Colburn analogie does not
present good results. This was already expected, sincegiesbetween fluid friction and heat transfer can only beedon
in a well structured boundary layer. The results of Figudesf®ws the necessity of an alternative treatment to estimat
with a good accuracy, the behavior of the local Stanton nuiintregions of the flow where the boundary layer is not well
structured, like inside recirculation zones and after tregachment of the boundary layer, as the following test wélse
illustrate.

5.4 An approach to estimate the Stanton number in detached fles

In order to propose a new methodology to estimate the lo@ait8h number inside a recirculation region, the experi-
mental work of Vogel and Eaton (1985) was set as the benchtoal&velop this approach. In this test case a backward
facing step, with a height df.038m is heated in the bottom plate with a constant heat fluX70fiv’/m?. The Reynolds
number based on the height of the step is 27023. The freerstrelacity flow is11.3m/s. The P1-isoP2 mesh used to ex-
ecute the simulation has 4191 nodes and 8016 elementseR#jushows the behavior of the local Stanton number when
calculated by the use of the Colburn analogie. This behaviggests that after the reatachment point the boundary laye
is being reestructured. This reestruction occurs in a retiiat has approximately the same length of the recirculatio
region.

The results of Figure (4.a) suggests that it is possible libreée a polynomial relation to calculate the local Stanto
number, inside the recirculation region from the detachrpeimt to a distance of twice the recirculation zone length,
based on the physical reality of the backward facing stepogfe/and Eaton. This relation is given by equation (34).
By using this equation the behavior of the local Stanton nemnim a simulation done with the Cruz and Silva Freire
wall law, is shown in figure (5). The adjust obtained with eipra(34) shows a good accuracy between numerical and
experimental values and the transition from the use of tusigon to the calculation with the Colburn analogie is sthpo
after the reestruction region of the boundary layer. It ipamtant to say that the necessary length for the boundaey lay
reestruction is still an open problem and needs furtheiiesudHowever, this methodology turns viable the simulatbn
turbulent thermal flows with the high Reynolds- ¢ model with wall laws and heat flux boundary conditions. Inesrd
to validate this methodology to other geometries with baumpdayer detachment, the next section shows its performanc
in an asymmetric plane diffuser and on a smooth hill.

5.5 Extension of this new approach to other detached flows inated by different geometries

In order to extend this methodology to other geometries, iex test cases were proposed, based on studies of the
asymmetric plane diffuser of Buice and Eaton (1995) and uhieutent flow over a 2D hill, studied by Loureiro et. al
(2007). The boundary conditions used to execute these afions are illustrated in figure (6).
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In the experimental works of Buice and Eaton (1995) and Liooet. al (2007) the thermal field is not considered.
They studied only the dynamical field. What was done to crieadenew test cases based on these experimental works was
to calculate first the dynamical field of these flows, withaytuiting any thermal boundary condition. Then, a simulation
with an imposed constant temperature on the wall was exécutiter this step, the equivalent thermal energy injected
in the flow is calculated by measuring the temperature psofiefore and after the heated wall. Then an equivalent heat
flux was calculated and imposed in the same wall, where thstanntemperature condition was imposed. By doing this
procedure is expected that the same energy injected in tivelfiothe constant temperature boundary condition, should
be injected by the equivalent constant heat flux conditiaris important to say that in both cases occur the boundary
layer detachment. In order to obtain an accurate behavitireofelocity and temperature fields inside the recircutatio
regions, the law of the wall of Cruz and Silva Freire (1998swaed in both cases. This law was the one with the best
performance among all the laws of the wall tested. Thesdtsesere published in the master’s dissertation of Gontijo
(2009).

Figure (7) illustrate, respectively,the temperature fesfiaken after the heated walls for the asymmetric plarfiesdif
of Buice and Eaton (1995) and the 2D hill of Loureiro et. al@2Ptest cases. This approach is able to predict the
equivalent wall temperature inside the recirculation eegiof flows over distinct boundary geometries, even when the
mechanism responsible by the boundary layer detachmentésyasmooth adverse pressure gradient. More details
over the proccess of development of this new methodologgiaen by Gontijo and Fontoura Rodrigues (2009). It is
important to notice that the temperature profiles shoulde@xactly the same when simulations are taken using a etnsta
temperature and a constant heat flux boundary conditiom, iétiee energy injected by both boundary conditions is the
same. The energy injected in the flow, associated with tlegiat of the temperature profile should be the same instead.
The error obtained with this methodology based on the phaysgality of the backward facing step and extended to other
geometries i9.21% for the diffuser and).06% for the smooth hill.
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Figure 6. Geometry and boundary conditions of the Buice aatdriE(1995) diffuser (a), geometry and boundary condi-
tions of the Loureiro et. al (2007) 2D hill (b)
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Figure 7. Temperature profiles in the asymmetric diffusedBwite and Eaton (1995) - X/h=26 (a) and in the 2D hill of
Loureiro et. al (2007) in X/h=6.5 (b)

7. CONCLUSIONS

This work proposed, implemented and validated, succdgsfubriginal numerical methodology used to impose heat
flux boundary conditions in the high Reynolds- ¢ model, without the need to create a heat flux law of the walkt Pa
works done by the authors were used to develop this methggblsed on the employment of classical analogies between
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fluid friction and heat transfer on the wall. The test caselts@evelop this methodology and also to understand the main
obstacles of this approach was the Vogel and Eaton (198KWaad facing step. The advances done based in this test
case were then tested in two other geometries and showethihatethodology can be extended to distinct geometries,
even when the detached is induce by smooth adverse presadiergs. One of the aspects that can be better studied is
the necessary length to the restructuring of the boundgey kfter the detachment, even though in the studied tesscas
the adopted standard considered in this work has provided ggsults.
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