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Abstract. The goal of this work is to propose a new methodology to simulate turbulent thermal wall flows, using the
classicalκ−ε model. The focus of this approach is based on the manner used to implement heat flux boundary conditions
using wall laws. In order to explain and to validate this new algorithm several test cases are used, testing a great range of
flows in order to analyze the numerical response on various physical aspects of the fluid flow. The proposed approach uses
simultaneously a thermal law of the wall, an analogy betweenfluid friction and heat transfer rates and an interpolating
polynomial relation that is constructed with a data base generated on experimental research and numerical simulation.
The algorithm used to execute the numerical simulations applies the classicalκ − ε model with a consolidate Reynolds
and Favre averaging process for the turbulent variables. The turbulent inner layer can be modeled by four distinct velocity
wall laws and by one temperature wall law. Spacial discretization is done by P1 and P1/isoP2 finite elements and the
temporal discretization is implemented using a semi-implicit sequential scheme of finite differences. The pressure-velocity
coupling is numerically solved by a variation of Uzawa’s algorithm. To filter the numerical noises, originated by the
symmetric treatment to the convective fluxes, it is adopted abalance dissipation method. The remaining non-linearities,
due to explicit calculations of laws of the wall, are treatedby a minimal residual method.
Keywords: turbulence, finite element method, wall laws, analogies, turbulent heat flux

1. INTRODUCTION

Thermal turbulent flows over solid surfaces occur in many situations of industrial interest and the thermal boundary
conditions imposed on the boundaries of the computational grid may be of two types: temperature and/or heat flux. The
second condition is more usual in real problems and it bringssome additional difficulties to its numerical treatment.

According to Chen and Jaw (1998) the high Reynoldsκ− ε model is the most used turbulence model in the treatment
of industrial flows. To model the behavior of the flow in the internal region of the turbulent boundary layer, theκ − ε
model uses analytical expressions known as wall laws. The main difficulty in simulating a thermal turbulent flow with a
heat flux boundary condition on the wall using the high Reynoldsκ− ε model is the absence of a heat flux wall law.

The method that we propose to solve this inconvenience is to calculate the coefficient of heat transfer by convection
h, along the solid boundary, and use its value to convert an imposed heat flux on an equivalent wall temperature. This
information is then sent to a temperature wall law that calculates the temperature boundary condition in the nodes placed
on the border of computational grid.

The main difficulty is to estimate, with a good accuracy, the numerical values of the heat flux convection coefficient,
since it depends strongly on the flow and in features like the thermodynamic properties of the fluid, the solid geometry
in which the flow occurs and in the flow Reynolds number. In thiswork, for non-detached boundary layers, the values
of h are calculated with the use of analogies between fluid friction and heat diffusion. For detached boundary layers the
calculation is done using an interpolating polynomial relation.

The good performance of classical analogies used to calculate heat transfer rates on flat plates was shown by Gontijo
and Fontoura Rodrigues (2006). The problem of using analogies between fluid friction and heat diffusion in detached
boundary layers was discussed in the work of Gontijo and Fontoura Rodrigues (2007). An original approach based on the
use of analogies for solving the problem of imposing heat fluxboundary conditions on the high Reynoldsκ − ε model
was first presented by Gontijo and Fontoura Rodrigues (2008)and an evolution of this method was shown by Gontijo and
Fontoura Rodrigues (2009). The present work shows how this new and original method can be used to simulate thermal
turbulent flows with heat flux boundary conditions over different geometries.

The solver used to execute the simulations, named Turbo 2D, is a research Fortran numerical code, that has been
continuously developed by members of the Group of Complex Fluid Dynamics - Vortex, of the Mechanical Engineering
Department of the University of Brasília, in the last twentyyears. This solver is based on the adoption of the finite elements
technique, under the formulation of weighted residuals proposed by Galerkin, adopting in the spatial discretization of the
calculation domain with the triangular elements of the typeP1 and P1-isoP2, as proposed by Brison, Buffat, Jeandel and
Serres (1985). The P1-isoP2 mesh is obtained by dividing each element of the P1 mesh into four new elements. In the P1
mesh only the pressure field is calculated, while all the other turbulent variables are calculated with the P1-isoP2 mesh.

Considering the uncertainties normally existing about theinitial conditions of the problems that are numerically sim-
ulated, it is adopted the temporal integration of the governing equations system. In the temporal integration process the
initial state corresponds the beginning of the flow and the final state occurs when stop the temporal variations of the ve-
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locity, pressure, temperature and other turbulent variables. In order to reach the final state a pseudo transient occurs. The
temporal discretization of the governing equations is implemented by the algorithm of Brun (1988) witch uses a sequential
semi-implicit finite differences method with truncation error of order0(∆t) and allows a linear handling of the equation
system, at each time step.

The resolution of the coupled equations of continuityand momentum is done by a variant of Uzawa’s algorithm,
proposed by Buffat (1981). The statistical formulation, responsible for the obtaining of the system of average equations,
is done with the simultaneous usage of the Reynolds (1895) and Favre (1965) decomposition. The Reynolds stress tensor
is calculated by theκ − ε model, proposed by Jones and Launder (1972) with the modifications introduced by Launder
and Spalding (1974). The turbulent heat flux is modeled algebraically using the turbulent Prandl number with a constant
value of 0,9.

In the program Turbo 2D, the boundary conditions of velocityand temperature can be calculated by four velocity and
two temperature laws of the wall. The velocity laws of the wall used in this work are: the classical logarithm law, and
the laws of Mellor (1966), Nakayama and Koyama (1984), and Cruz and Silva Freire (1998). The temperature law of
the wall used is the Cheng and Ng (1982) law of the wall. The numerical instability resultant of the explicit calculation
of the boundary conditions of velocity is controlled by the algorithm proposed by Fontoura Rodrigues (1990). The
numerical oscillations induced by the Galerkin formulation, resultant of the centered discretization applied to a parabolic
phenomenon, that is the modeled flow, are cushioned by the technique of balanced dissipation, proposed by Huges and
Brooks (1979) and Kelly, Nakazawa and Zienkiewicz (1976) with the numerical algorithm proposed by Brun (1988).

In order to quantify the wideness of range and the consistence of the numerical modeling done by the solver Turbo
2D, the wall heat fluxes obtained numerically are compared tothe experimental data of Vogel and Eaton (1985) and two
qualitative test cases were proposed based on the works of Buice and Eaton (1995) and Loureiro et. al (2007).

2. GOVERNING EQUATIONS

In this work all the dependent variables of the fluid are treated as a time average value plus a fluctuation of this
variable, in a determinate point of space and time. In order to account variations of density, the model used applies the
well known Reynolds (1985) decomposition to pressure and fluid density and the Favre (1965) decomposition to velocity
and temperature. In the Favre (1965) decomposition a randomize generic variableϕ is defined as:

ϕ (~x, t) = ϕ̃ (~x) + ϕ
′′

(~x, t) with ϕ̃ =
ρϕ

ρ̄
and ϕ′′ (~x, t) 6= 0. (1)

Applying the Reynolds (1895) and Favre (1965) decompositions to the governing equations and taking the time aver-
age value of those equations, we obtain the mean Reynolds equations:
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In this system of equationsρ is the fluid density,t is the time,xi are the space cartesian coordinates in tensor notation,
µ is the dynamic viscosity coefficient,δij is the Kronecker delta operator,gi is the acceleration due to gravity,T is the
fluid temperature,ui is the flow velocity ,k is the thermal conductivity,p is the fluid pressure. In these equations the
tilde denotes the time-average of a quantity whereas quotation marks denotes the fluctuation of a quantity in the sense of
Favre (1965) decomposition. Similarly, overbar denotes the time-average of a quantity in the sense of Reynolds (1985)
decomposition. Theα is the molecular thermal diffusivity and two news unknown quantities appear, respectively, in the
momentum (3) and in the energy equations (5), defined by the correlations between the velocity fluctuations, the so-called
Reynolds Stress, given by the tensor−ρu′′

i u
′′

j , and by the fluctuations of temperature and velocity, the so-called turbulent

heat flux, defined by the vector−ρu′′

i T
′′.
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The Reynolds stress of turbulent tensions is calculated by theκ − ε model, proposed by Jones and Launder (1972)
with the modifications introduced by Launder and Spalding (1974), where suggest
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and
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κ2

ε
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1
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. (9)

The turbulent heat flux is modeled algebraically using the turbulent Prandl numberPrt equal to a constant value of
0,9 by the relation

−ρu′′
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. (10)

In the equation (9)Cµ is a constant of calibration of the model, that values0, 09, κ represents the turbulent kinetic
energy andε is the rate of dissipation of the turbulent kinetic energy. Once thatκ andε are additional variables, we need
to know there transport equations. The transport equationsof κ andε were deduced by Jones and Launder (1972), and
the closed system of equations to theκ− ε model is given by:
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with the model constants given by:

Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 , Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 .

3. WALL FUNCTIONS

Theκ−ε turbulence model is incapable of properly representing thelaminar sub-layer and the transition regions of the
turbulent boundary layer. To solve this inconvenience, thesolution adopted in this work is the use of wall laws, capable
of properly representing the flow in the inner region of the turbulent boundary layer.

There are four velocity and two temperature wall laws implemented on Turbo 2D. The laws used in this simulation are
shown bellow, except for the classical log law that further explanations are unnecessary.
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3.1 Velocity wall law of Mellor (1966)

Deduced from the mean equation of Prandtl for the turbulent boundary layer and considering the pressure gradient
term for integration, this wall function is a primary approach to flows that suffer influence of adverse pressure gradients.
Its equations are, respectively, for the laminar and turbulent region

u∗ = y∗ +
1

2
p∗y∗2 , (20)
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where the asterisk upper-index indicates dimensionless quantities of velocityu∗, pressure gradientp∗ and distance to the
wall y∗ as functions of scaling parameters to the near wall region, Kis the Von Karman constant andξp∗ is Mellor’s
integration constant which is function of the near-wall dimensionless pressure gradient.

For calculations purposes the intersection of both regionsis considered to be the same as the log law expressions where
y∗ = 11, 64. The relations between the dimensionless near wall properties and the friction velocityuf are:
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ũx

uf

and p∗ =
1

ρ̄

∂p̄

∂x

ν

uf
3

. (22)

The friction velocity is calculated by the relation:
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In equation (21) the termξp∗ is a value obtained from the integration process proposed byMellor (1966) and is a func-
tion of the dimensionless pressure gradient. Its values areobtained through interpolation of those obtained experimentally
by Mellor, shown in Tab. 1.

Table 1. Mellor’s integration constant (1966)

p∗ −0.01 0.00 0.02 0.05 0.10 0.20 0.25 0.33 0.50 1.00 2.00 10.00
ξp∗ 4.92 4.90 4.94 5.06 5.26 5.63 5.78 6.03 6.44 7.34 8.49 12.13

3.2 Velocity wall law of Nakayama and Koyama (1984)

In their work Nakayama and Koyama (1984) proposed a derivation of the mean turbulent kinetic energy equation, that
resulted in an expression to evaluate the velocity near solid boundaries. Using experimental results and those obtained by
Strattford (1959), the derived equation is
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whereK∗ is the expression for the Von Karman constant modified by the presence of adverse pressure gradients,τ∗ is a
dimensionless shear stress,C = 5.445 is the log-law constant and the parameterts is a value of t at positiony∗s.

3.3 Velocity wall law of Cruz and Silva Freire (1998)

Analyzing the asymptotic behavior of the boundary layer flowunder adverse pressure gradients, Cruz and Silva Freire
(1998) derived an expression for the velocity in the inner region of turbulent boundary layer. The solution of the asymptotic
approach is
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where the sub-indexw indicates the properties at the wall, K is the Von Karman constant,Lc is a length scale parameter
anduf is the friction velocity.

The proposed equation for the velocity, equation (26), has abehavior similar to the log law far from the separation and
reatachment points but, close to the separation point, it gradually tends to Stratford’s equation (1959).

3.4 Temperature wall law of Cheng and Ng (1982)

In this work only one of the two temperature wall laws implemented in the Turbo 2D code is used. For the calculation
of the temperature Cheng and Ng (1982) derived an expressionfor the near wall temperature similar to the logarithmic
law of the wall for velocity. For the laminar and turbulent regions, the equations are respectively

(T0 − T )y
Tf

= y∗ Pr and
(T0 − T )y

Tf

=
1

KNg

ln(y∗) + CNg with y∗ =
ufy

ν
(27)

whereT0 is the environmental temperature,y is the normal distance up to the wall,ν is the cinematic viscosity andTf is
the friction temperature, as defined by Brun (1988)
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and the friction velocityuf is calculated by the relation
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The intersection of these regions are aty∗ = 15, 96 and the constantsKNg andCNg are, respectively,0, 8 and12, 5.

4. FORMULATION OF A NEW METHOD TO IMPOSE HEAT FLUX BOUNDARY CO NDITIONS IN THE
κ− ε MODEL

As discussed before the imposition of a heat flux boundary condition in a high Reynolds turbulence model, such as
the classicalκ− ε, requires a special treatment since there are no heat flux wall functions available. This work proposes a
new method to solve this inconvenience. The main idea is to use the Colburn (1933) analogie, equation (30), to estimate
the Stanton number for non-detached boundary layers.

Stx =
Cfx

2Pr
2

3

, (30)

whereCfx is the local friction coefficient and the local Stanton number can be evaluate by

Stx =
qx

ρcpu∞(Tw − T∞)
where, for a flat plate, qx = −k

(
∂T

∂y

)

y=0

. (31)

If there is an unheated starting length, so the thermal boundary layer begins its development under a pre-existing
velocity boundary layer and an adjustment is necessary to take into account this peculiarity of the flow. The adjust
proposed by Kays and Crowford (1993) can be done on equation (30) resulting in the equation (32),

Stx =
Cfx

2Pr
2

3

(
δu
δT

) 1

7

, (32)

whereδu andδT denotes, respectively, the thickness of the velocity boundary layer and of the thermal boundary layer.
In equation (31) an accurate calculation of the temperaturegradient is a difficult task since the use of laws of the wall

produce the loss of some information in the wall region. On the other and, this difficulty can be avoided by employing
the equations (30) or (32), where the local friction coefficientCfx is calculated with the use of the friction velocityuf ,
equation (29), numerically calculated by the Turbo2D code as

Cfx

2
=

τw
ρu2

∞

with τw = ρu2

f so Cfx = 2
u2

f

u2
∞

. (33)

By these calculations it is possible to estimate, with a goodaccuracy, the heat transfer rates in turbulent flows where the
boundary layer is well structured, for example, in flows overflat plates and other geometries that don’t generate boundary
layer detachment.
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The problem in using this formulation happens when we analyze the flow inside or at downstream of a recirculation
region, where the boundary layer is not well structured and the use of analogies is not a viable alternative. In these cases
Gontijo and Fontoura Rodrigues (2009) developed a polynomial expression using the previously experimental study of
Vogel and Eaton (1985), that studied a turbulent flow over a heated backward facing step that had a condition of a constant
heat flux imposed on its lower wall. The relation obtained is expressed by equation (34)

St (x∗) = 0, 00106+ 0, 00912x∗ − 0, 00895x∗2 + 0, 00233x∗3, (34)

with

x∗ =
x− xd

xr − xd

, (35)

wherex defines the local coordinate in the flow direction,xd is the detachment point andxr is the attachment point.
Expression (34) presents good results in other geometries,different from the backward facing step, such as the asym-

metric plane diffuser of Buice and Eaton (1995) and the smooth hill in an open channel of Loureiro et. al (2007).

5. RESULTS

Several test cases were used to validate this methodology inorder to show its generality. First it is shown the good
performance of the analogies in cases where there is no boundary layer detachment. Following are addressed problems of
using classical analogies when the boundary layer is not well structured. Thereafther are shown the arguments taken into
account to develop a new approach to calculate the Stanton number inside a recirculation region and finally, this approach
is tested for different geometries that induce the boundarylayer detachment.

5.1 Use of analogies on flat plates with unheated starting lengths and low temperature gradients

First it is shown the performance of the Colburn analogie in the estimation of the local Stanton number for four different
test cases, based on the experimental works of Taylor et. al (1990). In this work the authors made several measurements
of the local Stanton number over a heated flat plate. The platehad2, 4m long. The flow is two-dimensional and the
velocity of the free stream flow isU∞ = 28m/s. The results presented in figure (1) shows the behavior of four different
test cases, varying the initial unheated starting length. The main idea of this work is to evaluate the influence of a thermal
boundary layer starting over a developed velocity boundarylayer in the behavior of the heat transfer rates over a plate
with low temperature gradients. In these cases there is a difference of18K between the temperature of the plate and of
the free stream flow. The numerical P1/isoP2 mesh used to execute the simulations had 18447 nodes and 35872 elements.
In this case the wall law used for velocity was the classic logarithm law and for temperature the wall law of Cheng and
Ng (1982), since there are no significative pressure gradients imposed by this simple geometry. The numerical value of
the local Stanton number was calculated by two different ways, using the equations (31) and (32) called in figure (1),
respectively, numerical 1 and numerical 2. It is possible tonotice that the use of the Colburn (1933) analogie calculated
by equation (32) produces better results. The explanation for this behavior consists on the fact that the derivatives of
temperature in the normal direction of the plate are not veryaccurate, since the use of a high Reynolds model restrict the
numerical simulation to a certain distance above the wall and this is accompanied by a loss in the quality of results.

5.2 Analogies in an isothermal flat plate with high temperature gradients

In order to validate the use of the Colburn (1933) analogie inproblems where the temperature and velocity fields are
coupled due to a high temperature gradient, was made a simulation of a problem first studied by Ng. (1981). In this
test case a flat plate of0.25m long, heated in a constant temperature of1250K, receives a flow of air with a free stream
velocity of 10, 7m/s and with a uniform temperature of293K. In this work the variation range of the local Reynolds
number is placed between5.0 105 < Rex < 7.8 105. There is a difference of957K between the temperature of the plate
and of the free stream flow. It was used a P1/isoP2 mesh with 6499 nodes and 12672 elements. The simulation was done
only with the classic wall law for velocity and the wall law ofCheng and Ng (1982) for temperature. Figure (2) shows the
variation of the local Stanton number through the plate calculated by the same way as those from the Taylor et. al (1990)
test case. The behavior observed is the same, the use of the Colburn (1933) analogie calculated by equation (32) is the
best option to estimate the heat transfer rates. As expected, the increase in the intensity of temperature gradients makes
the results obtained with equations (31) becomes more inaccurate in the immediate vicinity of the wall.

5.3 The use of analogies in a recirculation region

To check the behavior of the heat transfer rates inside a recirculation region and the performance of analogies in this
situation, it was selected a test case based on the works of Liou et. al (1992). In this test case, artificial roughness elements
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called "ribs", are used to induce the flow separation, increasing the turbulence levels and, by consequence, the heat transfer
rates. The ribbed channel studied in this work presents a Reynolds number of 12600. The velocity on witch the Reynolds
number was calculated is7.4m/s and the height of the rib is0.008m. The P1-isoP2 mesh used on the simulations had
3739 nodes and 7200 elements. In the experimental work of Liou et. al (1992), the rib was made of aluminum and it was
heated by a thermal film in its underside, providing a condition of constant heat flux. The top part of the channel was
insulated, so an adiabatic wall was created. The height of the rib represents twenty percent of the height of the channel.
Figure (3) shows the behavior of the heat transfer rates along the channel.

In this work the wall heat flux is calculated in the non dimensional form of the Nusselt number, that for a channel can
be calculated by the following relation:

Nux =
2qxPrH

µCp(Tw − Tbulk)
(36)

In the equation above,Nux represents the local Nusselt number,qx is the local heat flux,Pr is the Prandtl number of
the fluid, H is the height of the channel, andTw is the temperature of the wall. Combining equation (36) withthe Colburn
(1933) analogie, equation (31), and with the definition of the local Stanton number, where the bulk temperature may be
taken as

Tbulk =
Tw + T∞

2
, (37)

it is possible to establish a relation between the local Nusselt number and the friction velocity as

Nux =
4Pr

1

3 u2

fxH

νu∞

. (38)

The values ofNus, shown in Figure (3), are the local Nusselt numbers for a channel without the presence of the Ribs,
calculated by the Dittus-Boeltter equation. It is possibleto observe a good agreement between numerical and experimental
data in non detached regions (places A, B and C). Inside the recirculation zones, the use of the Colburn analogie does not
present good results. This was already expected, since analogies between fluid friction and heat transfer can only be done
in a well structured boundary layer. The results of Figure (3) shows the necessity of an alternative treatment to estimate,
with a good accuracy, the behavior of the local Stanton number in regions of the flow where the boundary layer is not well
structured, like inside recirculation zones and after the reatachment of the boundary layer, as the following test casewill
illustrate.

5.4 An approach to estimate the Stanton number in detached flows

In order to propose a new methodology to estimate the local Stanton number inside a recirculation region, the experi-
mental work of Vogel and Eaton (1985) was set as the benchmarkto develop this approach. In this test case a backward
facing step, with a height of0.038m is heated in the bottom plate with a constant heat flux of270W/m2. The Reynolds
number based on the height of the step is 27023. The free stream velocity flow is11.3m/s. The P1-isoP2 mesh used to ex-
ecute the simulation has 4191 nodes and 8016 elements. Figure (4) shows the behavior of the local Stanton number when
calculated by the use of the Colburn analogie. This behaviorsuggests that after the reatachment point the boundary layer
is being reestructured. This reestruction occurs in a region that has approximately the same length of the recirculation
region.

The results of Figure (4.a) suggests that it is possible to calibrate a polynomial relation to calculate the local Stanton
number, inside the recirculation region from the detachment point to a distance of twice the recirculation zone length,
based on the physical reality of the backward facing step of Vogel and Eaton. This relation is given by equation (34).
By using this equation the behavior of the local Stanton number, in a simulation done with the Cruz and Silva Freire
wall law, is shown in figure (5). The adjust obtained with equation (34) shows a good accuracy between numerical and
experimental values and the transition from the use of this equation to the calculation with the Colburn analogie is smooth,
after the reestruction region of the boundary layer. It is important to say that the necessary length for the boundary layer
reestruction is still an open problem and needs further studies. However, this methodology turns viable the simulationof
turbulent thermal flows with the high Reynoldsκ − ε model with wall laws and heat flux boundary conditions. In order
to validate this methodology to other geometries with boundary layer detachment, the next section shows its performance
in an asymmetric plane diffuser and on a smooth hill.

5.5 Extension of this new approach to other detached flows induced by different geometries

In order to extend this methodology to other geometries, twonew test cases were proposed, based on studies of the
asymmetric plane diffuser of Buice and Eaton (1995) and the turbulent flow over a 2D hill, studied by Loureiro et. al
(2007). The boundary conditions used to execute these simulations are illustrated in figure (6).
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In the experimental works of Buice and Eaton (1995) and Loureiro et. al (2007) the thermal field is not considered.
They studied only the dynamical field. What was done to createtwo new test cases based on these experimental works was
to calculate first the dynamical field of these flows, without inputing any thermal boundary condition. Then, a simulation
with an imposed constant temperature on the wall was executed. After this step, the equivalent thermal energy injected
in the flow is calculated by measuring the temperature profiles before and after the heated wall. Then an equivalent heat
flux was calculated and imposed in the same wall, where the constant temperature condition was imposed. By doing this
procedure is expected that the same energy injected in the flow, by the constant temperature boundary condition, should
be injected by the equivalent constant heat flux condition. It is important to say that in both cases occur the boundary
layer detachment. In order to obtain an accurate behavior ofthe velocity and temperature fields inside the recirculation
regions, the law of the wall of Cruz and Silva Freire (1998) was used in both cases. This law was the one with the best
performance among all the laws of the wall tested. These results were published in the master’s dissertation of Gontijo
(2009).

Figure (7) illustrate, respectively,the temperature profiles taken after the heated walls for the asymmetric plane diffuser
of Buice and Eaton (1995) and the 2D hill of Loureiro et. al (2007) test cases. This approach is able to predict the
equivalent wall temperature inside the recirculation regions of flows over distinct boundary geometries, even when the
mechanism responsible by the boundary layer detachment is avery smooth adverse pressure gradient. More details
over the proccess of development of this new methodology aregiven by Gontijo and Fontoura Rodrigues (2009). It is
important to notice that the temperature profiles should notbe exactly the same when simulations are taken using a constant
temperature and a constant heat flux boundary condition, even if the energy injected by both boundary conditions is the
same. The energy injected in the flow, associated with the integral of the temperature profile should be the same instead.
The error obtained with this methodology based on the physical reality of the backward facing step and extended to other
geometries is0.21% for the diffuser and0.06% for the smooth hill.

6. Figures
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Figure 1. Local Stanton number for Taylor et al. (1990) test case.U∞ = 28 - Isothermal plate (a),ξ=0,36 m (b),ξ=0,76
m (c) andξ=1,36 m (d)
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Figure 6. Geometry and boundary conditions of the Buice and Eaton (1995) diffuser (a), geometry and boundary condi-
tions of the Loureiro et. al (2007) 2D hill (b)
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Figure 7. Temperature profiles in the asymmetric diffuser ofBuice and Eaton (1995) - X/h=26 (a) and in the 2D hill of
Loureiro et. al (2007) in X/h=6.5 (b)

7. CONCLUSIONS

This work proposed, implemented and validated, successfully, a original numerical methodology used to impose heat
flux boundary conditions in the high Reynoldsκ − ε model, without the need to create a heat flux law of the wall. Past
works done by the authors were used to develop this methodology based on the employment of classical analogies between
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fluid friction and heat transfer on the wall. The test case used to develop this methodology and also to understand the main
obstacles of this approach was the Vogel and Eaton (1985) backward facing step. The advances done based in this test
case were then tested in two other geometries and showed thatthis methodology can be extended to distinct geometries,
even when the detached is induce by smooth adverse pressure gradients. One of the aspects that can be better studied is
the necessary length to the restructuring of the boundary layer after the detachment, even though in the studied test cases
the adopted standard considered in this work has provided good results.
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