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Abstract. This work presents a numerical model for solving the thermal entry problem in vertical, annular, two-phase 

flow. The momentum and energy equations are solved to obtain the velocity and temperature fields in both the core and 

the film. Each equation is solved for the core and the film simultaneously using the Finite Volume Method and an 

iterative procedure is employed to deal with the well known coupling in annular flows, between the film velocity, shear 

stress and film thickness. For the thermal entry problem, three types of boundary conditions can be used, namely 

prescribed temperature, prescribed wall heat flux, or mixed type. The Nusselt number and the heat transfer coefficient 

are computed from the temperature profile along the axial position for these cases.  
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1. INTRODUCTION 

 
Annular two-phase flow is one of the most common configurations in multiphase flows. It occurs in both, gas-

liquid and liquid-liquid systems for laminar and turbulent regimes. Regarding gas-liquid annular flow, it is commonly 

encountered in the process, nuclear and oil industries, inside boilers and heat exchangers, for example. It occurs at 

moderate to high gas superficial velocities and it is characterized by the existence of a liquid film adjacent to the wall 

and a gas core flowing in the center of the duct. A wavy interface exists between both phases and its morphology 

depends on the gas and liquid mass flow rates (see for example Azzopardi, 1997; Whalley & Hewitt, 1978). This flow 

pattern has been widely studied because it is preferred in many processes due to its large convective heat transfer 

coefficient. Furthermore, it usually occurs before critical heat flux is reached in evaporative heat-transfer systems 

(Hewitt & Whalley, 1989). As far as liquid-liquid annular flow is concerned, it has attracted interest in the oil industry 

because of the proved enhanced efficiency of the water lubricated transportation of heavy oils; water is injected in the 

oil such that it flows as an annular film along the pipe wall while oil flows in the core (see Ghosh et al., 2009). In 

liquid-liquid annular flow, the interface is not always wavy as in gas-liquid, but other aspects regarding stability are 

important (see Bannwart, 2001). Other benefits, like corrosion prevention in aqueous liquid solutions transportation, for 

example, can be obtained by liquid-liquid annular flow.  

The hydrodynamic problem in annular two-phase flow has been widely studied and various models have been 

proposed. Yet, their scope is usually limited to either liquid-liquid or gas-liquid systems, as they rely on empirical 

closure relations or are based on restrictive hypothesis upon flow regime, film thickness or shear stress distributions 

Beyond stability issues and interfacial phenomena, annular flow in both types of systems can be modeled using the 

same approach, since they can be described by a unique set of governing equations, momentum, mass and energy 

conservation equations. As pointed out by Hewitt & Whalley (1989), given the independent variables (fluid properties, 

channel geometry and total core and film flow rates), annular flow modeling consists in the calculation of three 

dependent variables, namely film flow rate, mean film thickness, and pressure gradient(or wall shear stress).  

Laminar annular flow is rarely encountered in gas-liquid systems, so models for this pattern have to take into 

account the gas core and liquid film turbulence, and the complex interaction across the interface. In addition, other 

phenomena as entrainment and deposition are to be contemplated (see (Moeck & Stachiewicz 1972); (Dobran 1983); 

Adechy & Issa, 2004; Kishore & Jayanti, 2004; Antal et al., 1998; Okawa et al., 2000; Alipchenkov et al., 2004, among 

others). Whereas in liquid-liquid systems, there is a wide range of flow rates for which the flow can be laminar.  In 

these cases, if the film thickness and the pressure gradient are known, the analytical solution can be obtained. 

The heat transfer problem has been studied for laminar liquid-liquid flow using the analytical solution of the 

momentum equations to obtain the velocity fields necessary to solve the energy equation (Stockman & Epstein, 2001; 

Su, 2006; Leib et al., 1971). These works solve the energy equation analytically for different boundary conditions at the 

wall. Some works (Dobran, 1983; Fu & Klausner, 1997) solve the energy equation for gas-liquid annular flow using a 

separate hydrodynamic model for each phase and closure relations for the interface which depend on empirical 

correlations for the interfacial or wall shear stress. 

Fernández et al. (2010) developed a model to solve the hydro-dynamically fully developed flow in annular 

two-phase flow. This work presents a new solution algorithm which, unlike mentioned approaches, makes no use of 

empirical closure correlations to relate shear stresses, pressure gradient and film thickness nor assumes any velocity 

profile for the film. It provides an accurate, simple and complete numerical computation of all the hydrodynamic 
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parameters requiring just core and film fluid mass flow rates as input data to solve mass and momentum conservation 

equations. The success of the algorithm relies on two main features, (1) the coupled solution of the film and core 

velocity fields, which inherently satisfies the continuity of the velocity and shear stress fields at the interface, and (2) 

the pressure gradient calculation through an iterative procedure based on the fulfillment of the global mass conservation 

of the core.  

The main objective of this work is to complement the solution presented in Fernández et al (2010) by 

developing a complete model for the numerical solution of the energy equation in annular flow, which can be solved 

either for gas-liquid or liquid-liquid systems, as well as for laminar or turbulent flow regimes, as long as a suitable 

model for effective viscosity and conductivity calculation is incorporated. The energy equation can be solved for any of 

the three kinds of boundary conditions. The solution of the energy equations for the core and film described below, is 

based on the same approach used for the momentum equations. This method solves the momentum and energy 

equations for the core and film in a coupled way automatically satisfying the shear stress and heat flux at the interface. 

The model is validated against the solutions given by Leib et al. (1971) and Su (2006) for liquid-liquid laminar 

annular flow. 

 

2. HYDRODYNAMICS 

 
The flow field for hydro-dynamically fully developed, laminar, two phase flow with smooth interface is 

illustrated in figure 1. The subscripts c and f stand for core and film respectively. The velocity fields ( )fU R and 

( )c
U R  in figure 1 are merely illustrative. R is the tube radius and δ is the mean film thickness. 

 

 
Figure 1: Core-annular flow of two fluids in a circular pipe 

 

The equations that describe the velocity fields, written for cylindrical coordinates, are 

 

1
0c

c c

dud dp
r g r R

r dr dr dz
µ ρ δ
 

= − < < − 
 

 (1) 

1
0

f

f f

dud dp
r g r R

r dr dr dz
µ ρ δ
 

= − < < − 
 

 (2) 

 

where µc , ρc, µ f and ρf  are the dynamic viscosities and densities of the core and the film. The momentum equations are 

subject to the following boundary conditions, 

 

0 0
du

r
dr

= =  (3) 

0u r R= =  (4) 

 

The continuity of velocities and shear stresses at interface is respectively given by Eqs. (5) and (6).  

 

( ) ( )c f Iu R u R uδ δ− = − =  (5)  

c f IR Rδ δ
τ τ τ

− −
= =  (6) 
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The mass flows of core and film are calculated by the integration of the velocity profiles as, 

0

2 ( )

R

c cm u r rdr

δ

πρ
−

= ⋅∫&
 

(7) 

2 ( )

R

f f

R

m u r rdr
δ

πρ
−

= ⋅∫&
 

(8) 

These relations represent the global mass conservation for the core and film and are used, together with 

momentum conservation, in an iterative solution algorithm to correct and obtain the pressure gradient and the film 

thickness that satisfy the mentioned equations, for given superficial velocities. 

 

3. HEAT TRANSFER 

 
The steady state heat transfer in the thermal entry region for annular flow, disregarding axial diffusion and 

viscous dissipation, is governed by the following equations.  

 

( ) 1
0

c c c c

c

cp u T T
k r r R

z r r r

ρ
δ

∂ ⋅ ⋅ ⋅ ∂∂  
= ⋅ ⋅ < < − 

∂ ∂ ∂ 
 (9) 

 
 

( ) 1f f f f

f

cp u T T
k r R r R

z r r r

ρ
δ

∂ ⋅ ⋅ ⋅ ∂ ∂
= ⋅ ⋅ − < < 

∂ ∂ ∂ 

 (10) 

 

where kc, cpc, kf and cpf  are  the core and film conductivities and specific heat. The initial condition for temperature is 

given by, 

 
(0, ) 0T r T=  (11) 

 

The boundary condition at the center of the tube is, 

0 0
dT

r
dr

= =  (12) 

 

The continuity of fluxes at interface gives, 

c fR R
q q

δ δ− −
′′ ′′=  (13) 

 

The boundary conditions at the wall can be: 

 

1. First kind boundary condition, prescribed temperature, 

 

                         

( , )T z R Tw=  (14) 

 

2. Second kind boundary condition, prescribed wall flux, 

 

                         
f W

r R

T
k q

r =

∂
′′− =

∂
 (15) 

 

3. Third kind boundary condition, heat transfer with an external fluid of temperature Ta and heat transfer 

coefficient h, 

 

                      

( , )
[ ( , ) ]

f

T z R
k h T z R Ta

r

∂
− = ⋅ −

∂
 (16) 

 

4. FINITE VOLUME INTEGRATION 
 

The time-averaged transport equations for both the core and the film are integrated along their entire domains. An 

independent mesh with a fixed number of volumes for each region allows refinement within the film. The interface 
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between both phases is positioned between the last core volume (Ng) and the first film volume (Ng+1), as shown in 

Figure 2. Along the iterative procedure of the algorithm explained in Section 5, the film thickness varies each time it is 

corrected, so ∆rl and ∆rg are adjusted as well since the number of volumes within the film and the core is constant. 

 

 
 

Figure 2: (a) Grids for core and film domains – (b) Finite volumes contiguous to the interface 

 

The transport equations (1), (2), (9) and (10) are written for a generic transported variable Φ with its corresponding 

diffusion coefficient Γ. 

 

( ) 1I u
r S

z r r r

φ φ φ∂ ⋅ ⋅ ∂ ∂ 
= Γ ⋅ ⋅ + 

∂ ∂ ∂ 
 (17) 

As the problem is hydro-dynamically fully developed, the advective term in equation 17 is zero. The generic 

variables are summarized in Table 1 for each one of the transport equations. The greek letter Ψ stands for shear stresses 

and heat flux that will later be referred to in a generic way. The generic property I
Φ
 is the thermal and momentum 

inertia. 

 

Table 1: Transported variables and transport properties 

 φ  Γ  I
φ

 
S  Ψ

 

Momentum Uz

 

µ
 

ρ
 

dp
g

dz
ρ− +

 

τ
 

Energy T  k  cpρ ⋅
 

0  ''q

 
 

Integration of Eq. (17) in volume P (Figure 2) gives, 

 
2 2( )

( ) ( )
2

e w

e w
p e wn s

e w

r rdd
r r U U r r S

dr dr

φφ
ρ φ ρ φ

Ψ Ψ

−
 ∆ − = Γ − Γ + 

123 14243

 
(18) 

Equation (18) is valid for internal volumes in both fields, the film and the core, as long as the physical properties 

and the volume size of each field are used. For interpolating the derivatives in the diffusive terms, central differencing 

scheme (CDS) is used. In turn, upwind scheme is used for advective terms, since energy diffusion in axial direction is 

neglected. The southern term adds to the source term as shown in Table 2. This means that the thermal entry problem is 

solved in a parabolic way, solving one slice at a time before moving on to the next one. After interpolation is done, the 

following algebraic equation represents the discrete momentum conservation within volume P.  

 

p P e E w W
A A A Bφ φ φ+ + =  (19) 

 

The coefficients for equation (19) are shown in Table 2. 
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Table 2: Coefficients for internal volumes 
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2 2

2

e wP
S
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To integrate Eq.(17) within volumes contiguous to the interface, Nc and Nc+1 in Figure 2, the continuity of 

interfacial stresses and heat fluxes has to be ensured by finding a single expression to evaluate them in both volumes as  

equation (20) illustrates. 

 

( ) ( 1)e Nc w Nc

fc
c f I

R R

dudu

dr drδ δ

+

− −

Ψ Ψ

Γ = Γ = Ψ

14243 14243
 

(20) 

 

To accomplish this, a procedure described in Patankar (1980) for media with non-uniform diffusion coefficient (say 

viscosity or conductivity) is used. An expression for an equivalent interfacial diffusivity is derived out of the continuity 

of Ψ at the interface resulting in, 

 

1
;

fe e

e e

P E f c

rf f
f

r r

∆ −
Γ = + = 

Γ Γ ∆ + ∆ 
 (21) 

Then, Ψ is calculated as, 

E P
I I I

I I

d

dr r

φ φφ −
Ψ = Γ = Γ

∆
 (22) 

where     ( )1

2
I c f

r r r∆ = ∆ + ∆  

 

The interpolation of the derivative at the interface is done by CDS using the velocities of interfacial volumes, Nc 

and Nc+1, as shown by Eq.(21). While the advective and source terms remain the same, the diffusive terms of the 

coefficients A
D
 for the discretized momentum equations for volumes Nc and Nc+1 are, 

 

Table 3: Diffusion terms of the coefficients for interfacial volumes 
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The diffusivity is stored at the volume faces in a staggered grid to simplify discretization since it is required at the 

volume interfaces to calculate fluxes. It is expressed as a split function (24).  
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(23) 
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Velocity and temperature fields for the film the core are solved in a single matrix equation simultaneously, as 

schematically shown below, satisfying the momentum and energy equations and boundary conditions, for given 

pressure gradient and film thickness. 

 

c cc

f ff

BA

BA

φ

φ

φ

φ

     
=     

      

O

O
 (24) 

 

5. SOLUTION ALGORITHM 

 

The flow chart shown in Figure 4 summarizes the scheme of solution. The input data consist in mass flow rates 

of each phase, fluid properties, tube dimensions, initial conditions and numerical parameters such as convergence 

tolerance and mesh size. Initial values of pressure gradient and film thickness need to be guessed. These are corrected 

through an iterative procedure until the converged values are obtained. 

The hydrodynamic solution is first solved in order to obtain the velocity fields necessary for the thermal entry 

problem. For a given film thickness, the external loop starts calculating the position of the volume centers and faces for 

the whole domain, core and film. It also builds a deferred mesh for viscosity. Then, for a given pressure gradient, the 

internal loop solves Eqs. (1) and (2) to obtain the velocity profiles of the film and the core. With the core field, its mass 

flow rate is obtained using Eq. (7) and the pressure gradient is adjusted to satisfy the known core flow rate through a 

procedure similar to the one proposed by (Patankar & Spalding 1972). This algorithm uses the error between the flow 

rate calculated from the velocities obtained from momentum equations and the given value to correct the pressure 

gradient. With it, new velocities are obtained from the momentum equation and the process is repeated until the core 

mass flow rate is satisfied. After convergence of the internal loop, the velocity fields and pressure gradient satisfy 

momentum equation for a given film thickness. 

Next, the film thickness is corrected to satisfy the mass flow rate of the film using Eq. (8). As the number of 

volumes in each domain is constant, values of ∆rc and ∆rf change, as well as the positions of volume centers and faces. 

As the correction of δ affects the velocity field of both, core and film, the algorithm re-enters the internal loop, to find 

the pressure gradient that satisfies momentum equation for the new film thickness. This process is repeated until 

convergence of the whole system, obtaining velocity fields, film thickness and pressure gradient that satisfy momentum 

and mass conservation equations (Eqs. (1),(2),(7) and (8)). 

Although this algorithm has two correction loops, it shows very quick convergence for the cases used in 

validation, even starting from guessed values of pressure gradient and film thickness very far from the converged ones. 

It is important to highlight that the coupled solution of film and core velocity fields (Eq.25) satisfies the 

continuity of shear stress at the interface and provides a pressure gradient dependent upon the core mass flow rate. In 

turn, the pressure gradient is responsible for the film velocity field, which determines the wall shear stress. In this way, 

the intimate relationship between the wall shear stress and pressure gradient is fulfilled without explicitly making use of 

any equation to relate them within the solution process. This is one of the key points of the algorithm because the 

triangular relationship between the film mass flow rate, the wall shear stress, and the film thickness is successfully 

solved making no use of empirical relations for wall or interfacial friction factor nor assuming any film velocity profile. 

In addition, this feature makes the model extendible to the parabolic flow case, i.e, when force summation (pressure and 

wall shear stress) is unbalanced due to acceleration. 

Once the velocity fields and the film thickness are obtained, the algorithm solves the thermal entry problem in 

a parabolic way. This means that one tube slice at a time is solved before moving on to the next one, where the previous 

temperature field is used. An axial mesh is built with a finite number of volumes Nz and system (25) is solved for each 

slice of the tube, until the temperature profile develops. The bulk temperature of each phase and that of the whole 

system is computed in order to get complete information for different definitions of Nusselt numbers, which is then 

computed, together with the heat transfer coefficient. 
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Figure 3: Flow chart for the solution algorithm 

 

6. VALIDATION AND RESULTS 

 
 The validation of the algorithm is done in three stages. First, the hydrodynamic results are compared to the 

analytical solution in order to show the accuracy of the iterative procedure. Then, the temperature profiles are compared 

to the analytical solution obtained by Leib et al. (1971). Finally, the Nusselt number is computed and compared with the 

values obtained by Su (2006) form an analytical solution for the thermal entry problem of a viscous oil flowing in the 

core, and a less viscous fluid flowing in the film. 

For the first two stages, the liquid-liquid system composed by water and kerosene was chosen in order to 

compare the current results with those of Leib et al. (1971) who developed a large series of experiments for different 

flow rate of water and kerosene and different temperatures at the entrance. Table 4 summarizes the information of the 

cases chosen for validation, from that work. 

 

Table 4: Flow rates and initial temperatures 

 
Qc 

[lt/min] 

Qf 

[lt/min] 

Tc 

[°C] 

Tf 

[°C] 

A2 2,03 2,45 28,4 28,4 

B2 2,03 2,05 28,4 28,4 

C2 2,03 1,5 28,4 28,4 

B5 2,7 2,05 28,5 51,9 

 
 

6.1 Analytical solution 
 

 Velocity profiles obtained from the implemented algorithm using laminar viscosities are compared with the 

analytical solution for fully developed laminar annular flow for known pressure gradient and film thickness. This 

comparison shows how accurate the algorithm is, in terms of solving the triangular relationship of the film. The 

predicted pressure gradient and film thickness were substituted into Eqs. (25) and (26) to compare analytical profiles 

with the predicted ones. 
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2 22 2
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δ δ ρ ρ
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l l
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R
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ρ ρ

µ µ
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Figure 4: Algorithm results against the analytical solution 

 

6.2 Temperature profiles 
 

 Cases A2 and B3 of table 4 were chosen to compare the results for the temperature profiles. Figures 7 a) and b) 

present a comparison of the temperature profiles obtained by Leib et al. (1971) using an analytical solution and the ones 

obtained by the present algorithm. The figures also show the least squares fitting curves of the experimental data 

presented by the reference. Nevertheless, as also reported by the reference, the experimental conditions used resulted in 

Reynolds number above the transition region or in fully turbulent regime. Then both, the analytical solution and the 

numerical hereby developed would fail in these case. The implementation of a turbulence model into the numerical 

algorithm is under run.  

It is important to highlight that the present algorithm takes the input data presented in table 4 and solves the 

transport equations obtaining the velocity fields as well as the pressure gradient and the film thickness. In contrast, to 

obtain the velocity profiles from the analytical solution, pressure gradient and film thickness need to be known. Then, 

the results obtained by the algorithm are introduced in Eqs. (25) and (26) in order to compare the results given by the 

model against a well established solution. 

The fluid properties of water and kerosene are calculated with the axial bulk temperature of each phase. As 

kerosene is not a pure substance, its properties can present large variations for the experimental conditions analyzed. 

This can explain the temperature differences between the calculated temperature profiles and those obtained by Leib et 

al. (1971) through an analytical solution, where different properties could be considered. The values of the properties 

used in the solution are not mentioned in Leib et al. (1971) work. 

 

0 0.001 0.002 0.003 0.004 0.005

Radial position [m]

0

10

20

30

40

50

60

70

80

90

100

T
em

p
er

at
u
re

 d
if

fe
re

n
ce

 -
 ∆

Τ
 (

ºC
)

Least squares - Leib

Analitical - Leib

Present work

                 
a) 

 

0 0.001 0.002 0.003 0.004 0.005

Radial position [m]

0

10

20

30

40

50

60

70

80

90

100

T
em

p
er

at
u
re

 d
if

fe
re

n
ce

 -
 ∆

Τ
 (

ºC
)

Least squares - Leib

Analitical - Leib

Present work

 
b) 

Figure 5: Radial temperature profiles comparison for the cases a) A2 and b) B5 of Leib et al. (1971) 

 

6.3 Nusselt number 
 

The system chosen to show Nusselt number results is the one that is represented by the following fluid properties 

relations. 
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The Nusselt number is defined as, 
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where, the bulk temperature is defined by, 
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The results are expressed in terms of a dimensionless variable ξ defined below. 
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Figure 5 show the results for Nusselt number for first and third kind boundary condition compared to the ones 

presented by Su (2006) using an analytical solution for the temperature profiles. 
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Figure 6: Comparison of Nusselt number obtained in this work and presented by Su (2006) using an analytical 

solution 
 

The differences in the entry region can be attributed to some scaling problem in the ordinate axis originated in 

the definition of Pe. Although Su (2006) presents the definition of Pe in a clear way, this hypothesis has its origin in the 

fact that the curves are systematically shifted. If this problem didn't exist the curves would coincide exactly. 

Furthermore, the Nusselt numbers for the developed region are almost coincident as well, as shown Table 4. 

 

Table 4: Nussel number at the developed region 

  Nu∞  

 TP 2Bi = 10Bi =

R

R

δ−
 

This 

work 
SU This 

work

 

SU This 

work

 

SU 

0.7 11.27 11.26 18.57 19.02 14.16 14.47 

0.8 8.85 8.84 13.99 14.08 10.64 10.69 

0.9 6.86 6.95 9.74 9.74 7.87 7.87 
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7. FINAL REMARKS 
 

A solution algorithm for the calculation of hydrodynamic and heat transfer parameters for two-phase annular 

flow was successfully implemented. It solves the triangular relationship between the film mass flow, wall shear stress 

and film thickness through an iterative procedure, taking advantage of the coupled solution of the core and the film 

velocity profiles. In this way, no empirical closure correlation is used, and no velocity profile is assumed beforehand for 

the film. 

The hydrodynamic model was successfully validated for liquid-liquid systems with the analytical solution. In 

turn, the validation for the heat transfer problem shows the universality of the coupled solution of both phases using an 

equivalent diffusivity at the interface that accounts for the continuity of heat and momentum fluxes. Some deviations in 

the temperature profiles are observed in the cases where the physical properties were not known, which could have led 

to the slight differences in the results. 

The solution algorithm presented in this work can be readily extended to deal with other annular flow patterns 

such as gas-liquid, evaporating film or any kind of turbulent flow, as long as the physical phenomena as entrainment 

and deposition, turbulence, etc. are properly incorporated into the algorithm. 

 

8. REFERENCES 

 
Adechy, D. & Issa, R.I., 2004. Modelling of annular flow through pipes and T-junctions. Comp. & Fluids, 33, 289-

313. 

Alipchenkov, V.M. et al., 2004. A three-fluid model of two-phase dispersed-annular flow. International Journal of 

Heat and Mass Transfer, 47(24), 5323-5338.  

Antal, S.P. et al., 1998. The Development of Multidimensional Modeling Capabilities for Annular Flows. In Lyon, 

France. 

Azzopardi, B.J., 1997. Drops in annular two-phase flow. Int. J. Multiphase Flow, 23, 1-53. 

Bannwart, A.C., 2001. Modeling aspects of oil–water core–annular flows. J. of Petroleum Sc. & Eng., 32, 127 - 143. 

Dobran, F., 1983. Hydrodynamic and Heat Transfer Analysis of Two-Phase Annular Flow With a New Liquid Film 

Model of Turbulence. International Journal of Heat and Mass Transfer, 26, 1159-1171. 

Fernández, F, Alvarez Toledo, A., Paladino, E. E., 2010, Submitted to 13th Brazilian Congress of Thermal Sciences 

and Engineering - ENCIT 2010. 

Fu, F. & Klausner, J.F., 1997. A separated flow model for predicting two-phase pressure drop and evaporative heat 

transfer for vertical annular flow. International Journal of Heat and Fluid Flow, 18(97), 541-549. 

Ghosh, S. et al., 2009. Review of oil water core annular flow. Renewable and Sustainable Energy Reviews, 13, 

1957-1965. 

Hewitt, G.F. & Whalley, P.B., 1989. Vertical annular two-phase flow. Multiphase Sc. and Technology, 4, 103-181. 

Kishore, B.N. & Jayanti, S., 2004. A multidimensional model for annular gas-liquid flow. Chem. Eng. Sci., 59, 

3577-3589. 

Leib, T.M., Fink, M. & Hasson, D., 1971. Heat transfer in vertical annular laminar flow of two immiscible liquids. 

Int. J. Multiphase Flow, 33, 533-549. 

Moeck, E.O. & Stachiewicz, J.W., 1972. A droplet interchange model for annular-dispersed two-phase flow. Int. J. 

Heat Mass Transfer, 15, 637-653. 

Okawa, T. et al., 2000. Numerical Simulation of Annular-Dispersed Flows in Round Tubes and Annuli Using a 

Multi-Fluid Model. In Third UK-Japan Mini-Seminar. Imperial College, London, UK. 

Patankar, S.V. & Spalding, D.B., 1972. A calculation procedure for heat, mass and momentum transfer in three-

dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), 1787-1806. 

Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, Taylor & Francis. 

Stockman, G. & Epstein, N., 2001. Uniform flux heat transfer in concentric laminar flow of two immiscible liquids. 

Can J Chem Eng, 79, 990–995. 

Su, J., 2006. Exact Solution of Thermal Entry Problem in Laminar Core-annular Flow of Two Immiscible Liquids. 

Chemical Engineering Research and Design, 84(11), 1051-1058.  

Whalley, R.B. & Hewitt, G.F., 1978. The correlation of liquid entrain- ment fraction and entrainment rate in annular 

two-phase flow. 

 

9. RESPONSIBILITY NOTICE 
 

The authors are the only responsible for the printed material included in this paper. 

 


