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Abstract. The goal of this work is to perform finite element approximations for creeping flows of nonlinear viscoelastic 
fluids. For this end, a Galerkin least-squares formulation, in terms of extra-stress, pressure and velocity, is employed.  
Its major features are to remain stable even in elastic-dominated flow regions and to allow the use of a combination  of  
equal-order bilinear finite element interpolations. Some numerical simulations of steady creeping flows of Maxwell-B  
fluids around a cylinder kept inside a planar channel are performed, aiming the investigation of the elastic influence  
on viscoelastic fluid dynamics.
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1. INTRODUCTION 

Viscoelastic flows are found in several industrial applications, such as oil recovery, paper and textile coating and  
extrusion  of  polymeric  materials.  Numerical  simulations  are  usually  employed to  study industrial  processes  using 
viscoelastic fluids, since experiments can be very expensive and time consuming (Owens and Phillips, 2002).

The  present  work  performs  multi-field  Galerkin  least-squares  (GLS)  approximations  in  terms  of  extra-stress,  
pressure and velocity fields (Behr et al., 2004), for non-linear differential viscoelastic flows, using the upper convected 
Maxwell model (Astarita and Marrucci, 1974). The multi-field approximation for such model consists on a variational  
formulation for the momentum and mass balance equations, coupled with an extra-stress-rate-type constitutive equation. 
An additional difficulty arises from the multi-field approximation, when compared to mixed approximations, namely,  
the handling of the extra-stress tensor as a primal variable. In the finite element context, two compatibility conditions 
appear for such a model: the need to satisfy the classical Babuška-Brezzi condition involving finite element sub-spaces  
for velocity and pressure fields, and a second compatibility condition between extra-stress and velocity finite element 
subspaces  (Behr et al., 1993),. This formulation is developed as an attempt to enhance the stability of the classical 
Galerkin  approximation for  differential  viscoelastic  flows,  which  major  feature  is  to  circumvent  the  compatibility 
conditions  between  velocity-pressure  and  extra-stress-velocity  finite  sub-spaces, hence  allowing the  use  of  simple 
combinations of finite  element  interpolations,  as  the equal-order  bi-linear  one. Furthermore,  due to  an appropriate 
design of its least-squares mesh-dependent terms, this formulation remains stable even for locally elastic-dominated  
flows, wherein the upper-convected derivative of the material equation plays a relevant role (Franca and frey, 1992).

To evaluate the performance of the GLS formulation, we use the benchmark problem of the steady creeping flow 
through a cylinder inside a planar channel. Moreover, we determine the elasticity effect on the flow field and stress  
components through the variation of the Deborah number from 0 to 0.9. 

2. MODELING

A multi-field boundary-value problem for steady creeping flows of upper-convected Maxwell fluids may be stated 
coupling the continuity and momentum equations with the UCM viscoelastic equation (Astarita and Marrucci, 1974),  
subjected to appropriate velocity and stress boundary conditions,

div−∇ p b=0 in 
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where the open bounded set Ω⊂ℜ2, with a regular polygonal boundary Γ,  denotes the fluid domain,  the velocity vector 
u, the hydrostatic pressure  p, and the extra-stress tensor τ , are the primal variables of Eq. (1), ρ is the fluid density, λ is 
the fluid relaxation time, ηp, is the polymeric viscosity, D is the strain rate tensor, b is the body force per unit of mass, 
th is  the  stress  vector,  ug and  τg are  the  imposed  velocity  and  extra-stress  boundary  conditions,  respectively. 
Furthermore, the upper-convected time derivative of τ  is defined by

τ=∇ u−∇ u− ∇ uT (2)

2.1. A multi-field GLS formulation

A multi-field GLS formulation for upper-convected Maxwell fluid flows governed by Eq.(1)-(2) may be written as: 
find the triple  h , ph ,uh ∈ h×Ph×Vg

h  such as:

B h , ph ,uh ;Sh , qh ,v h=F Sh , qh ,v h ∀Sh , qh , vh ∈  h×Ph×Vg
h (3)
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and
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with  h×Ph×V g
h  is the finite element product sub-space for extra-stress, pressure and velocity, respectively, and the  

stability parameter (Rek) and (DeK), are extensions of the stability parameter introduced by Franca and Frey (1992)  
for approximations of constant viscosity fluid flows.

3. NUMERICAL RESULTS

In this section, the multi-field GLS formulation (Eq.(3)-(5)) is used to approximate upper-convected Maxwell fluid 
flows defined by Eq.(1)-(2). The geometry and flow kinematics are depicted in Fig. 1a,  for a coordinate Cartesian 
system with origin on the cylinder center.  The channel aspect ratio is defined as the half height of the channel (h) 
divided by the cylinder radius (R) - with h/R=8 as suggested in (Behr et al., 2004). Due to flow domain symmetry, only 
half the channel is used in the numerical computations. After a mesh independence test on the dimensionless pressure  
coefficient, p*=p/U2, the computational domain h is partitioned into an equal-order combination of 2,860 Lagrangian 
bi-linear (Q1) finite elements for extra-stress, pressure and velocity fields. Fig. 1b shows a blow-up view of the chosen 
mesh around  the cylinder.

 (a)
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 (b)
Figure 1. Flow around a confined cylinder: (a) the problem statement; (b) a mesh detail.

The boundary conditions are (i) no-slip and impermeability on channel walls and cylinder surface, (ii) velocity and  
extra-stress symmetry conditions on the centerline, and (iii) fully-developed velocity and extra-stress profiles at inflow 
and outflow. The Deborah number, here defined in terms of the average inlet velocity U and the cylinder radius R,  is 
expressed by

De= λU
R

(6)

where  is the relaxation time.

(a) (b)
Figure 2. τ11

* elations plots around the cylinder, for Re=0: (a) De=0; (b) De=0.9.

Figures 2 and 3 show extra-stress elevation plots around the cylinder, for creeping flow (Re=0). Fig. 2 shows the 
dimensionless normal stress profiles, τ11

*=τ11R/ηpU, for De=0-0.9, while Fig. 3a-3b present dimensionless normal stress 
profiles, τ22

*=τ22R/ηpU, and shear stress profiles, τ12
*=τ12R/ηpU, respectively, for De=0.9. It can be observed that τ11 is 

symmetric around the cylinder for the Newtonian case - De=0 (Fig. 2a), which is in accordance to the typical behavior  
for inelastic fluids. This symmetry is broken as Deborah increases (Fig. 2b), with the maximum τ11

* reaching a value 
much higher than the Newtonian one . Besides, this maximum normal axial traction begins to occur just before the 
cylinder equator, certainly due to the fluid extension induced by the area restriction. 

(a) (b)
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Figure 3. (a) 22
* and (b) 12

* elevations around the cylinder, for Re=0 and De=0.9.

From Fig. 3a-3b, it can be noticed that  τ22
* and  τ12

* levels also increase with elasticity. Moreover, the maximum 
values of both extra-stress fields occur in the inflow surface of the cylinder, probably due to the locally extensional 
kinematics imposed by the cylinder, leading to higher values of the strain-rates. The τ22

* normal component presents 
two peaks just upstream of the cylinder (Fig. 3a) and the shear component τ2

* presents a greater value accelerating the 
fluid, in the inflow surface, than the value retarding it, in the outflow (Fig. 3b).

(a) (b)
Figure 4. Longitudinal first normal stress difference and pressure profiles at x2

*=0, for Re=0, De=0-0.9: (a) N1; (b) p*.

In order to complement and quantify the analysis introduced in Figs. 2 and 3, the first normal stress,  N1 = τ
*-τ

*, 
and pressure profiles are presented in Fig. 4a and 4b, in which the dimensionless coordinates x1

*=x1/R and x2
*=x2/R . For 

the inelastic case (De=0), a null first normal stress difference is obtained, as expected (Fig. 4a). Increasing the Deborah  
number, the first normal stress difference changes from zero to around 10 (Fig. 4a, for De=0 -0.9) close to the cylinder  
wall. While the extra-stress are stronger dependent on De, the pressure field seems to be unaffected by fluid elasticity,  
since it presents only some local slight disagreement for De=0.9 (Fig. 4b), probably due to some numerical oscillations. 

(a) (b)
Figure 5. τ11

* transverse profiles for Re=0 and De=0-0.9: (a) x1
*= -5; (c) x1

*= +5

Finally,  the  influence  of  the  stress  advective  term  of  the  UCM  equation  (Eq.(1)-(2))  on  the  flow  pattern  is  
investigated in Fig. 5. The 11

* profiles present an axisymmetric pattern around the cylinder, as illustrated by Fig. 5a and 
5b. Note that, despite both profiles have been evaluated at equal distance from the origin (at  x1

*=-5, in Fig.  5a, and 
x1

*=+5, in Fig. 5b), the influence of the cylinder is stronger downstream than upstream. This axisymmetric flow pattern 
is typically verified in advective dominated viscous flows. However, since inertia is neglected in Eq. (1), this behavior  
should be due to the stress advective term present in the material equation.

4. FINAL REMARKS
 

In this work a multi-field GLS approximation for upper-convected Maxwell model is used to analyze the creeping  
flow around a cylinder between two parallel plates, for the Deborah number varied from 0 to 0.9. The numerical results  
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confirmed  the  good  stability  features  of  the  multi-field  GLS  formulation  for  elastic-dominated  flows,  using  a  
combination of quadrilateral bi-linear finite elements. For purely dissipative flows (De=0), the extra-stress profiles for 
creeping flows show a symmetry, which is broken by fluid elasticity. Moreover, much higher values of the extra-stress 
close to the cylinder are obtained, as the elasticity increases.
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