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Abstract. Heat regenerators can be found in a considerable number of engineering applications, and are either
used as pair of fixed matrices or as single rotary matrix. The thermal design of these devices is usually done
considering models that rely on well-established simplifying assumptions. While most of these assumptions
comprise reasonable considerations, some of them could lead to noticeable errors on some occasions. One
such assumption is that there is no heat transfer between adjacent channels within the regenerator matrix.
While this is quite reasonable for fixed-bed exchangers, this might not be a good choice for rotary exchang-
ers on some occasions. Since rotary matrices can operate between two process streams presenting a large
temperature difference between them, a large temperature gradient may develop within the plane normal to
the flow direction, especially in the angular direction. This paper proposes a new model for simulating rotary
heat regenerators, taking into account this previously unconsidered matrix heat conduction effect. A numerical
solution of a test case with angular heat conduction is carried-out. With this solution, a parametric analysis
is performed, showing how the effects that gradually increasing the angular heat conduction can affect the
temperature distributions within the matrix and regenerator outlet.
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1. INTRODUCTION

The need for sustainable development and the growing energy savings requirements have increased the
necessity for more effective heat exchangers. As a result, the thermal design for these heat transfer devices
must take into consideration details previously seen as of minor importance. Regenerative heat exchangers
have a substantial number of applications in several processes where indirect heat transfer between two process
streams with a compact construction is required. The traditional thermal design of these exchangers are based
on solving a system of two energy transfer equations, one for the process streams and the other one for the
solid matrix. Different types of formulations are found in the literature (de Monte, 1999; Saastamoinen, 1999;
Larsen, 1967), some with more details than others. Nevertheless, apparently all previous formulations model
problem as that of heat transfer in a single independent channel. The problem with these formulations, is that
they cannot account for temperature gradients (and consequently heat transfer) in the direction perpendicular to
that of the fluid flow. As this may be unimportant for switching fixed-bed exchangers, it may be problematic for
rotary devices. Under this scenario, this investigation proposes a mathematical formulation for heat regenerators
that actually takes into account radial and angular temperature gradients within a rotary exchanger.
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2. PROBLEM FORMULATION

The usual simplifying assumptions for heat regenerators are (Kays and London, 1998; Shah and Sekulic,
2002):

1. The regenerator operates under quasi-steady-state or regular periodic-flow conditions (i.e., having con-
stant mass flow rates and inlet temperatures of both fluids during respective flow periods).

2. Heat loss to or heat gain from the surroundings is negligible (i.e., the regenerator outside walls are
adiabatic).

3. There are no thermal energy sources or sinks within the regenerator walls or fluids.

4. No phase change occurs in the regenerator.

5. The velocity and temperature of each fluid at the inlet are uniform over the flow cross section and constant
with time.

6. The analysis is based on average and thus constant fluid velocities and the thermo-physical properties of
both fluids and matrix wall material throughout the regenerator (i.e., independent on time and position).

7. The heat transfer coefficients (ℎℎ and ℎc) between the fluids and the matrix wall are constant (with
position, temperature and time) throughout the exchanger.

8. Longitudinal heat conduction in the wall and the fluids are negligible.

9. The temperature across the wall thickness is uniform at cross section and the wall thermal resistance is
treated as zero for transverse conduction in the matrix wall (in the wall thickness direction).

10. No flow leakage and flow bypassing of either of the two fluid streams occurs in the regenerator due to
their pressure differences. No fluid carryover leakage (of one fluid stream to the other fluid stream) occurs
of the fluids trapped in flow passages during the switch from hot to cold period , and vice versa, during
matrix rotation or valve switching.

11. The surface area of the matrix as well as the rotor mass is uniformly distributed.

12. The time required to switch the regenerator from the hot to cold gas flow is negligibly small.

13. Heat transfer caused by radiation within the porous matrix in negligible compared with the convective
heat transfer.

14. Gas residence (dwell) time in the matrix is negligible relative to the flow period.

The formulation employed in this work considers all these simplifications, but one. The channels are no
longer considered to be independent since there can be heat transfer within the matrix in the transversal direc-
tions. Since this consideration does not affect the energy transfer within the fluid flow, the same equation used
in (Shah and Sekulic, 2002) is herein employed:

� cp

(
∂T

∂t
+ vz

∂T

∂z

)
=

ℎPw
Af

(Ts − T ). (1)

For the heat conduction within the matrix a different balance is considered. The traditional model employed in
heat regenerators studies is based on the following equation for the energy transfer within the matrix:

�s cs
∂Ts
∂t

= −ℎPw
As

(Ts − T ), (2)
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In this study, since local conduction within the matrix is considered, the previous equation must be modified to
include these effects, leading to:

�s cs
∂Ts
∂t

= ∇ ⋅ (Ks ⋅ ∇Ts)−
ℎPw
As

(Ts − T ), (3)

where Ks is a thermal conductivity tensor. Considering the matrix as an orthotropic medium and assuming
that the components of Ks are invariable with position, equation (3) is reduced to:

�s cs
∂Ts
∂t

= kr
1

r

∂

∂r

(
r
∂Ts
∂r

)
+ k�

1

r2
∂2Ts
∂�2

+ kz
∂2Ts
∂z2

− ℎPw
As

(Ts − T ). (4)

The boundary conditions for this problem are given by:

T = Tin for z = 0,
∂Ts
∂z

∣∣∣∣
z=0

=
∂Ts
∂z

∣∣∣∣
z=L

= 0, (5)

∂Ts
∂�

∣∣∣∣
�=0

=
∂Ts
∂�

∣∣∣∣
�=2�

, Ts∣�=0 = Ts∣�=2�,
∣∣Ts∣r=0

∣∣ <∞, ∂Ts
∂r

∣∣∣∣
r=R

= 0, (6)

and the initial conditions are given by

T = Ts = T0 for t = 0. (7)

Although a transient single-blow can lead to useful information regarding the effects of heat transfer in the
matrix, the actual operation of a regenerator is periodic (also known as a quasi steady-state), the inlet conditions
are modified to give, for a parallel-flow arrangement:

T = TAin for z = 0 and 0 < � ≤ �AB, (8)

T = TBin for z = 0 and �AB < � ≤ 2�, (9)

and the velocity vz can assume different values for each process stream:

vz =
ṁ′′A
�A

for z = 0 and 0 < � ≤ �AB, (10)

vz =
ṁ′′B
�B

for z = 0 and �AB < � ≤ 2�, (11)

where ṁ′′ are the mass fluxes in the direction of the flow and � is the specific mass of each process stream.
By observing at the resulting formulation one can see that the model resembles formulations used for heat

transfer in porous medium. In fact, the proposed approach to the given problem treats the regenerator matrix as
a porous medium composed of cylindrical pores. The advantage of the current formulation is that it allows heat
transfer interactions among adjacent regenerator channels.

3. NORMALIZATION

3.1 Dimensionless parameters

The dimensionless parameters involved in this work are traditional parameters employed in heat exchangers
(Shah and Sekulic, 2002) and transient heat transfer (Özişik, 1993) analyses. The heat capacity ratio is defined
as the ratio below:

C∗r =
Cr

Cmin
, (12)

where fluid capacity rate and the matrix capacity rate are given by:

C = ṁ cp, Cr =
�s csAs L

�
, (13)
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in which Cmin is the minimum capacity of the two process streams. The number of transfer units is defined as:

NTU =
ℎAs
Cmin

(14)

Another parameter is the dimensionless dwell dime:

�∗dw =
�dw
�

=
L

vz �
(15)

where the dwell time �dw represents the time it takes for a fluid particle to cross the regenerator length.
Since different conductivities can be employed for each direction (and hence three different diffusivities),

different Fourier numbers arise. These are defined as:

For =
�r �

(D/2)2
, Fo� =

�� �

(D/2)2
, Foz =

�z �

L2
(16)

where

�r =
kr
�s cs

; �� =
k�
�s cs

; �z =
kz
�s cs

(17)

3.2 Dimensionless formulation

In order to normalize the mathematical formulations employed in this work the following dimensionless
variables are introduced:

r∗ =
r

D/2
, z∗ =

z

L
, t∗ =

t

�
, (18)

T ∗s =
Ts − Tmin
Tmax − Tmin

, T ∗ =
T − Tmin

Tmax − Tmin
, (19)

Introducing the dimensionless parameters in equation (4) leads to the following normalized equation for the
solid matrix:

∂T ∗s
∂t∗

= For
1

r∗
∂

∂r∗

(
r∗
∂T ∗s
∂r∗

)
+ Fo�

1

r∗2
∂2T ∗s
∂�2

+ Foz
∂2T ∗s
∂z∗2

− NTU

C∗r
(T ∗s − T ∗) (20)

Introducing the dimensionless variables in equation (1) leads to the following normalized equation for the
fluid stream:(

∂T ∗

∂t∗
�∗dw +

∂T ∗

∂z∗

)
= NTU (T ∗s − T ∗) (21)

The normalized boundary conditions are given by:

T ∗ = T ∗in for z∗ = 0,
∂T ∗s
∂z∗

∣∣∣∣
z∗=0

=
∂T ∗s
∂z∗

∣∣∣∣
z∗=1

= 0, (22)

∂T ∗s
∂�
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�=0

=
∂T ∗s
∂�
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, T ∗s ∣�=0 = T ∗s ∣�=2�,
∣∣T ∗s ∣r∗=0

∣∣ <∞, ∂T ∗s
∂r∗
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r∗=1

= 0 (23)

and the normalized initial condition is given by:

T ∗ = T ∗0 for t∗ = 0. (24)

In order to simulate the operation of the regenerator between two process streams, the inlet temperature can
vary with time and angular position, such that:

T ∗in =

{
T ∗in,A, for 0 ≤ � < �AB
T ∗in,B, for �AB ≤ � < 2�

(25)
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3.3 Performance assessment

The performance of heat regenerators is generally assessed by means of heat transfer effectiveness. For
balanced and symmetric exchangers, two different expressions can be written:

�1 =
−Q̇A
Q̇max

=
TAin − TAout,av
TAin − TBin

(26)

�2 =
Q̇B

Q̇max

=
TBout,av − TBin
TAin − TBin

(27)

Naturally, once a periodic operation regime has been reached Q̇A + Q̇B = 0 and both expressions lead to the
same value.

4. TEST-CASE

Since this paper is an initial study aimed at investigating the effects of transversal matrix conductivity, a
simpler case with heat conduction only in the angular direction is considered. Under this consideration, the
matrix equation is reduced to the following form:

∂T ∗s
∂t∗

= Fo�
1

r∗2
∂2T ∗s
∂�2

− NTU

C∗r
(T ∗s − T ∗) (28)

in addition for the sake of simplicity, since the problem has no dependence in the radial coordinate, a unitary
radius is considered, leading to the simpler form:

∂T ∗s
∂t∗

= Fo�
∂2T ∗s
∂�2

− NTU

C∗r
(T ∗s − T ∗) (29)

In order to compare the solution of the test-case problem with the model used in previous studies, the
following simplified equation for the case with no heat conduction in the matrix is considered:

∂T ∗s
∂t∗

= −NTU

C∗r
(T ∗s − T ∗) (30)

which naturally corresponds to the case with Fo� = 0.

5. NUMERICAL SOLUTION

Equations (21) and (29) are spatially discretized using the Finite Volumes Method. Second-order central
differences are used for the diffusive terms, leading to the following discretized equation for the matrix:

dTsP
dt

= Fo∗�
TsN − 2TsP + TsS

Δ�2
− NTU

Cr
(TsP − TP ), (31)

This equation is valid for all volumes; however, some considerations must be taken into account when consid-
ering volumes adjacent to the boundaries � = 0 and � = 2�. Due to the periodicity conditions, the following
relation holds:

TsS for volume adjacent to � = 0 equals TsN for volume adjacent to � = 2� (32)

For the fluid stream both second-order central differences and first- and second-order upwind schemes were
considered. When CDS is used the fluid equations lead to the equations below.

∙ For volumes adjacent to the channel entrance:

dTP
dt

�dw +
TE + TP − 2Tin

2 Δz
= NTU (TsP − TP ), (33)
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∙ For volumes adjacent to the channel outlet:

dTP
dt

�dw +
TP − TW

Δz
= NTU (TsP − TP ), (34)

∙ For internal volumes:

dTP
dt

�dw +
TE − TW

2 Δz
= NTU (TsP − TP ), (35)

For a fist-order upwind scheme the equations below are obtained.

∙ For volumes adjacent to the channel entrance:

dTP
dt

�dw +
2(TP − Tin)

Δz
= NTU (TsP − TP ), (36)

∙ For internal volumes:

dTP
dt

�dw +
TP − TW

Δz
= NTU (TsP − TP ), (37)

For a second-order upwind scheme the equations below are obtained.

∙ For volumes adjacent to the channel entrance:

dTP
dt

�dw +
2(TP − Tin)

Δz
= NTU (TsP − TP ), (38)

∙ For volumes adjacent to the one next to the channel entrance:

dTP
dt

�dw +
3TP − 5TW + 2Tin

Δz
= NTU (TsP − TP ), (39)

∙ For internal volumes:

dTP
dt

�dw +
3TP − 4TW + TWW

2 Δz
= NTU (TsP − TP ), (40)

5.1 Average outlets

The average temperatures used for assess the regenerator effectiveness are obtained from the following
expressions:

TAout,av(�) =
1

1/2

∫ 1/2

0
T (1, �, t∗) dt∗ (41)

TBout,av(�) =
1

1/2

∫ 1

1/2
T (1, �, t∗) dt∗ (42)

6. RESULTS AND DISCUSSION

A numerical solution to these equations using the CDS implementation for heat conduction within the
matrix and three different discretization schemes for discretizing the fluid equations was implemented in the
Mathematica framework. The time integration was performed using a readily available ODE system integrator,
similar to the procedure described in (Sphaier and Worek, 2008). The chosen ODE integrator for this work was
the Mathematica function NDSolve.
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6.1 Numerical convergence analysis

This first section presents numerical results for determining an adequate grid size for evaluating the numeri-
cal solutions. In order to validate the 2D numerical solution, the solution of a one dimensional problem, without
angular dependence is used. Then the 2D numerical solution code is executed for Fo� = 0, which should lead
to the same solution as the grid is refined. The parameter �m is the average value between �1 and �2.Tables 1
through 4 display comparison results between 1D and 2D solutions, gradually refining the grid in the angular
direction. As can be seen, the 2D solutions gradually progress to the effectiveness values calculated with the
1D solution as the �-grid is refined.

Table 1. Comparisons of 2D solution with 1D solution for Fo� = 0, NTU = 1 and Cr = 1.

Cr NTU � Fo imax jmax �1 �2 �m
1 1 0.01 0 10 10 0.315147 0.370054 0.342601
1 1 0.01 0 10 20 0.292199 0.353987 0.323093
1 1 0.01 0 10 40 0.280852 0.346167 0.313509
1 1 0.01 0 10 80 0.276232 0.344335 0.310283
1 1 0.01 0 10 100 0.275530 0.344407 0.309969

1D 0.273006 0.344950 0.308978

Table 2. Comparisons of 2D solution with 1D solution for Fo� = 0, NTU = 3 and Cr = 1.

Cr NTU � Fo imax jmax �1 �2 �m
1 3 0.01 0 10 10 0.42031 0.527688 0.473999
1 3 0.01 0 10 20 0.410284 0.53079 0.470537
1 3 0.01 0 10 40 0.405274 0.5323 0.468787
1 3 0.01 0 10 80 0.4029 0.533291 0.468095
1 3 0.01 0 10 100 0.402471 0.533577 0.468024

1D 0.400889 0.534742 0.467815

Table 3. Comparisons of 2D solution with 1D solution for Fo� = 0, NTU = 5 and Cr = 1.

Cr NTU � Fo imax jmax �1 �2 �m
1 5 0.01 0 10 10 0.452457 0.572006 0.512232
1 5 0.01 0 10 20 0.445938 0.57968 0.512809
1 5 0.01 0 10 40 0.442609 0.583342 0.512976
1 5 0.01 0 10 80 0.440948 0.585158 0.513053
1 5 0.01 0 10 100 0.440624 0.585534 0.513079

1D 0.439412 0.586985 0.513198
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Table 4. Comparisons of 2D solution with 1D solution for Fo� = 0, NTU = 10 and Cr = 1.

Cr NTU � Fo imax jmax �1 �2 �m
1 10 0.01 0 10 10 0.479098 0.60104 0.540069
1 10 0.01 0 10 20 0.4754 0.61155 0.543475
1 10 0.01 0 10 40 0.473417 0.616537 0.544977
1 10 0.01 0 10 80 0.472395 0.618956 0.545675
1 10 0.01 0 10 100 0.472187 0.619431 0.545809

1D 0.471399 0.621226 0.546313

After presenting the convergence analysis, simulation results are performed to investigate the effect of grad-
ually increasing the angular heat conduction in the matrix. Figures 1, 2 and 3 illustrate the effects of varying
some of the dimensionless parameters on the outlet temperature (for fixed position within the matrix) and aver-
age matrix temperature within an full cycle, composed of a hot period (0 ≤ t ≤ 1/2) followed by a cold period
(1/2 ≤ t ≤ 1). Figure 1 represents the case with no angular conduction in the matrix (Fo� = 0). As a result
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Figure 1. Variation of outlet temperature and average matrix temperature within a operating period with NTU
and Cf for Fo� = 1.

there is no heat transfer interaction among adjacent regenerator channels. As can be seen, when varying the
NTU causes a large heat exchange between matrix and fluid, which contributes for larger variations in matrix
temperatures. This will naturally lead to a larger energy exchange effectiveness since more heat could be ex-
changed between the hot and cold streams. Increasing the heat capacity rate, causes the matrix temperature to
present smaller variation because the relative thermal inertia of the matrix is larger.

Figure 2 presents the same results for Fo� = 1. Comparing the results with the previous figure, one can
observe that the presence of matrix heat conduction causes the temperature variations in the matrix to be less
prominent; however, the effects are small for this value of Fo�.

Figure 3 presents the same results for Fo� = 10. Comparing the results with the previous figures, one can
observe that the even larger presence of angular matrix conduction leads to significantly less variation in matrix
temperature variations.
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Figure 2. Variation of outlet temperature and average matrix temperature within a operating period with NTU
and Cf for Fo� = 1.
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Figure 3. Variation of outlet temperature and average matrix temperature within a operating period with NTU
and Cf for Fo� = 1.

7. CONCLUSIONS

This paper presented a formulation for analyzing the effects of matrix heat conduction (in all three direc-
tions) in rotary regenerative heat exchangers. The formulation was normalized and the effects of heat conduc-
tion in the three directions of the exchanger lead to the definition of three Fourier numbers. A test case with
only angular heat conduction was numerically simulated for conduction an initial investigation on the effects
of matrix heat conduction in regenerators. This direction was chosen because there is tendency to develop
a temperature gradient in this direction. The numerical simulation was constructed using the finite volumes
method with different differencing schemes for advective and diffusive terms, and implemented in the Mathe-
matica system. The results provide an indication to the effects that angular heat conduction have on temperature
distributions in heat regenerators.
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