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Abstract. In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium 

starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport 

equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-

Newtonian fluid. 
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1. INTRODUCTION 

 

In petroleum production there are many parameters that must be analyzed before deciding if an oil well is 

economically viable and come to decide if the oil exploitation is possible or not from a nature reservoir. One of the 

main parameters that are usually under consideration for financial analysis by the technical staff to evaluate the capacity 

of the oil production is the reservoir production oil estimative. In this case, numerical tools can be crucial to make a 

decision, being that, the experimental simulation usually is not enough to reproduce this process, because the 

complexity of the problem in question is higher.  

In this context, numerical tool get an important function in the several industries and has been the focus of a lot of 

private and public agencies for development and researches around the world. 

The hydrocarbon reservoir basically is made of porous stones staying in the under soil region, where the black oil is 

stored. The oil, in the beginning, produced by the source rock, migrates to reservoir rocks (porous media), by the action 

of the buoyancies drivers and by the capillary effects, the reservoir has a boundary formed by a low permeability that 

that impedes the escape of hydrocarbons from the reservoir rock.  

Figure 1 shows two types of different situations of the hybrid media (one clear medium and porous medium they have 

been analyzed in the same domain) that occurred in secondary recovery of the oil, the first is the water injection 

process, in this case, the fluid leaves the clear (well) and goes to porous region (reservoir). The second it is the 

production in the producer well, where the fluids are coming from the porous region (reservoir) to the clear medium 

(well).  

A mathematical model that allows numerical analysis of laminar flow for Non-Newtonian fluids in the porous or 

hybrid structures is desirable.  

In literature, there are few references about the laminar flow of power law fluid in porous media. Then, this paper 

has as focus to extend the mathematical model development by Pedras and De-Lemos, (2000-2001a) to flow of a Non-

Newtonian fluid (initially must be adopted the power law constitutive model) in porous medium using the method of 

local volume averaging. 

 

 
Figure 1: Secondary Oil Recovery Schema. 
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2. LITERATURE REVIEW 

 

Christopher and Middleman, (1965) have used a capilar tube model to develop an application of the modified Blake-

Kozeny equation to solve the laminar Non- Newtonian fluid flow in a packed and in a porous medium. The authors 

considered the rheological behaviour as being described by the power law model. The theory was tested and the results 

between analytical results were compared, the average differences between them were of 18%. 

Middleman, (1965) solved the governing equations that describe the evolution of the pressure and drag forces in 

power-law fluid flow in a rectangular section duct.  

Brea, Edwards and Wilkinson, (1976) obtained values for flow rates, pressure drop and thickness of a Non 

Newtonian slurry flow through a fluidized bed within uniform fixed spheres particles with constant diameters. The 

pressure drop and mass flow rate were obtained using a capillary tube model with rheological data from the slurry. The 

authors described a mathematical correlation that can be used to estimate the minimum velocity of fluidization, but it is 

not recommended to estimate boundary expansion characteristics on fluidized state. 

Hanks and Larsen, (1979) show a simple algebraic solution to volumetric flow rate of the laminar non Newtonian 

fluid flow regime using the power law model across concentric annulus. 

Liu, (1983) applied the Galerkin Finite Element Method (FEM) to determine the pressure drop and the mass flow 

rate to fully developed flow in arbitrary cross sections of ducts. The author finds out that the method used has a good 

precision to solve the pressure drop value problem. Liu, (1983)  compared that with results obtained by Miller´s method 

and observed that the data determined by Miller got reasonable values when they were used for a fluid that has power 

law index close to a unity. 

Dharmadhikari and Vale, (1985) proposed a calculus method to prescribe a pressure drop for inelastic fluids. 

Hayes, (1990) investigated the fluid flow boundary layers hydrodynamic and thermal comportment on packed bed. 

The volumetric averaging of the Navier-Stokes and energy conservation was used to describe heat transfer and fluid 

dynamics. The authors observed that Nusselt numbers have a strong dependence in the following parameters: Reynolds, 

Graetz numbers and the fluid and solid thermal conductivity ratio. 

Du Plessis e Maslilyah, (1991), extended the Navier-Stokes equations to input a new model to solve a laminar fluid 

flow across granular isotropic rigid porous medium within spatially variable permeability. The results showed versatile 

and useful equations and that confirm the results obtained by many empirics formulas.  

Shenoy, (1993) introduced a Non Newtonian version for Forccheimer´s extension about Darcy´s law to investigate 

various aspects associated with convective flow in a porous medium that was saturated with power law fluid. 

In Shenoy, (1994) was presented a wide literature review about Non Newtonian fluid flow and heat transfer in a 

porous medium.  

Hayes, Afacan and Boulanger, (1995) studied Navier-Stokes applications to prescribe the pressure data in packed 

beds, that were constituted by spherical particles.  

Hayes et al., (1996) developed a theoretical model to predict the pressure drop and velocities for power law fluid 

flow across the spherical uniform particles packed bed. This model was obtained from applying volumetric average on 

Navier-Stokes equations. The authors made comparisons with experimental data found in specific literature and 

concluded then it was a good agreement.  

Malin, (1997) showed a numerical simulation of turbulent power law fluid flow in tubes. The results obtained for 

friction factor and velocity profile for fully developed flow it was compared with experimental data and it was observed 

a good agreement among them.  

The Madhav e Malin, (1997) works showed the existence of a numerical calculus method for fully development 

flow in tubes. This method permits a very fast numerical simulation when compared with other usual method to solve 

the elliptical and parabolic problems. The authors also presented that this method was successful in the solution of the 

various bi-dimensional and three dimensional fully developed flows in ducts problems with or without heat transfer. 

Inoue and Nakayama, (1998) investigated the viscous and inertial effects of pressure drop in Non Newtonian flow 

across a porous medium. The porous medium was simulated by periodic spatially array of cubes. The numerical results 

were used to obtain a macroscopic relationship between pressure gradient and mass flow rate.  

Vijaysri, Chhabra e Eswaran, (1999) studied, theoretically, the steady flow of a power law fluid through a 

cylindrical rods arrangement. The authors showed results with details in terms of vortices and power law model’s 

viscosity modifications on the cylindrical surfaces, graphical analysis of stream function, vortices iso-lines and fluids 

dynamic parameters from viscous and pressure drag coefficients. They also compared the obtained results with the 

literature data. 

Pearson and Tardy, (2002) showed some continuous transport porous medium models and also presented the 

necessary length scales to transport the physical phenomena from porous scales to Darcy continuous scale using 

averaging variables. It evaluated the influences of rheology on transport parameters in multiphase and single phase 

flow.  

On this paper will be modelled the transport equations for power law fluid flow in porous medium using the method 

of local volume averaging 
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3. MATHEMATICAL MODELING 

 

3.1 Microscopic Transports Equations 

 

The mass conservation equation (or continuity equation), for steady laminar incompressible fluid flow, can be 

written the follow the way 
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The vector velocity in Cartesians coordinates is: 

( 332211 eeeV uuu  )                                                                                                                                                              (2) 

The conservation momentum equation for steady laminar incompressible fluid flow (Navier-Stokes equations) can 

been written as: 
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For Generalized Newtonian Fluid, the stress tensor can be according with shear ratio as: 
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Substituting the expression (4) in the momentum conservation equation (3), leads 
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Where   is apparent viscosity, that’s is a function of rate of fluid stress tensor (or rate of deformation tensor); using 

the power-law model or Ostwald-De Waele models, 

     
1

2

:





n
TT

m
VVVV

                                                                                                                     (6) 

where m e n are two empirical curve-fitting parameters and are known as the fluid consistency coefficient and the 

flow behaviour index respectively. For a shear-thinning fluid, the index may have any value between 0 and 1. The 

smaller the value of n, the greater is the degree of shear-thinning. For a shear-thickening fluid, the index n will be 

greater than unity. 

The Navier-Stokes equation in Cartesian coordinates can write in the follow form: 

In direction e1: 
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In direction e2: 
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In direction e3: 

     T
ee uu

x

p
gu

t

u
33

3
3

3

33
.. 


















 V                                                                                             (9) 

Where
1e
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2e  e 
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Substituting the term  
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e uum  in momentum conservation equation in direction e1, gets: 
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Observe that’s, 

  


0..
11

1 































I

i

i
j

j

i
i

T

x

v

xx

v

x
u ee                                                                                                                  (14) 

Because the term I in the expression (14) is null, for more information see equation (1) and find that 
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Admitting the viscosity coefficient, m, with a constant value, leads to: 
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For others directions e2 and e3, the same proceedings are valid. 

In the tensorial form, momentum conservation equation is: 
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3.2 Basic Definitions 

 

In order to facilitate the comprehension of the equations and the mathematical operations that will presented in the 

next sections  the basic definitions, extracted from specific literature references, were repeated here. For more details, 

see Bear, (1972) and De-Lemos, (2006). 

Representative Elementary Volume, (REV): Is the porous medium volume, where the volume averages of a 

certain quantity are defined. Figure (2) shows an example of this volume, [Bear, (1972)]. 

Porosity,  : Is the ratio between the fluid volume inside the REV, Vf, and V. 

V

V f




                                                                                                                                                                      (18) 

Intrinsic Volume Average: Is the volume average of a certain quantity,  , over the representative elementary 

volume, V, weighed by the phase volume which the amount,  belongs. For example, if  is a fluid property, its 

intrinsic volume average is expressed by: 

 

 

Figure 2– Representative Elementary Volume, REV. 
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Spatial Fluctuation: Is the difference between the local value (microscopic) of a certain quantity, , and its 

intrinsic volume average, i  [Whitaker, (1969)]., as shown in the Fig. (1) 
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Superficial Volume average: Is the volume average over V of a certain quantity . If  is a fluid property, one has: 
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On the other hand, if  is a solid property (porous matrix), one has: 
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Darcy’s Velocity: Is the superficial volume average of the fluid velocity: 
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Since Slattery, (1967) there were great progresses in volumetric average techniques applied to microscopic 

conservations equations, that’s find a relationship between volumetric average of derivatives and derivatives of 

volumetric average. 

Whitaker, (1969) comments that in the process of volumetric average (equation (21)) there are three types of 

characteristic length must been defined: 

i) The microscopic length, d, on which occur substantial variations of the microscopic fluid velocities; 

ii) The macroscopic length, L, on which occur substantial variations of the macroscopic fluid velocities (equation 

(23)) and 

iii) The length, l associated to with representative elementary volume (REV). 

The volume average of a certain quantity  is the transformation that defines the quantity v  at the center of the 

REV. 

Within three characteristics length Whitaker, (1969) shows that the relationship vvv    just only true if: 
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From the concept of the Representative elementary volume and characteristics lengths d, L and l it was development 

by (Slattery, (1967), Whitaker, (1969), Gray and Lee, (1977)) Local Volumetric Average Theorem, their relationship 

are: 
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where Ai and ui represent the area and velocity of the interface fluid/solid, respectively, and n is the external unit vector 

to the fluid and normal to the Ai. (Figure 2). In the development of the Eqs. (25)-(27) the only imposed restriction is the 

independence of V in relation to the time and space (Whitaker, (1969) and Gray and Lee, (1977)). Therefore, if the 

medium is undeformable, then Vf will be dependent only on the space and not on the time (Gray and Lee, (1977)). 

 

3.3 Macroscopic Transport Equations 

 

Applying the Local Volume Average Theorem (LVAT); the volumetric average of microscopic mass conservation 

equation for a fluid with constant mass specific  (Equation (1)) can has been the form as: 

0
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Because the non-slip condition, the microscopic velocities, V, is zero on interfacial superficies Ai simply the 

equation (28), joint with the Dupuit-Forchheimer relationship, i
D  VV  , for: 
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0 DV                                                                                                                                                                   (29) 

The equation (29) represents the macroscopic mass conservation for an incompressible fluid. 

The equation for momentum conservation, for a power law fluid model (with  and m keeps constants) flow in 

porous media can be written as: 
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Based on this, was developed the LVAT [Whitaker, (1969), Gray and Lee, (1977)], whose relationships are 

expressed by: 
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We can find, 
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Note that’s volumetric averaging from deformation rate that’s was volumetric average of root square of 

deformation ratio can be written as follow way:  
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And knowing that is V=0 on Ai, superficial and for an underformable porous medium, ui=0, the macroscopic 

momentum conservation can be express with: 
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Represents total drag force per volume unit (superficial force weighed by volume) due the presence of solid 

particles, composed by both the viscous and form (or pressure) drags. 

From the concept of spatially fluctuations (equation (20)), the divergent operator, in the left side of the equation 

(40) can be expanded as: 
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Where the term )( iii  VV  represents the hydrodynamic dispersion that is the highest order than as compare 

with the term )( ii  VV  (represents the macroscopic convective inertial force, Hsu and Cheng, (1990)) thus being 

neglected. In this former case, the macroscopic of momentum conservation equation in terms of Darcy velocity 

( i
D  VV  ) it was reduced like: 
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In porous media, the transient of Darcy velocity, normally, it decays quickly (Whitaker, (1969), Bear, (1972), Nield 

and Bejan, (1992)), hardly exceeding to as one second. Since this way, the tem is neglecting in the macroscopic 

momentum conservation equation in almost all practical cases (Whitaker, (1969), Bear, (1972), Vafai and Tien, (1981), 

Vafai and Thiyagaraja, (1987), Vafai and Kim, (1990a), Vafai and Kim, (1990b), Nield and Bejan, (1992)). 

The divergent on the left side of equation (43) represents the macroscopic inertial force that is always it negligible 

when compared with the terms on the right side of this equation (Hsu and Cheng, (1990)). This term as responsibility to 

increment of macroscopic hydrodynamic boundary layer, that happens in terms of scale order magnitude of length 

CuK  (where Cu is the non disturbing Darcy´s velocity; Vafai and Tien, (1981), yours values is small in most of the 

practical situations. 

The term, 
     

  

























T
DD

n
T

DD
T

DD

n

m
VV

VVVV
1

1 2

:
.


, in the equation (43) is the sponsor 

for the macroscopic boundary layers profiles  almost all of the situations are negligible, the exception is in the interface 

regions (porous medium/impermeable wall, distinct porous media and porous medium/ fluid). Because the fact then the 

hydrodynamics boundary layers is confined on the fine length, the experimental observations is very complex and 

difficult task, for this reason, the experimental data has been limited to the bulk effects, since like pressure drop and 

mass flow, where the most of all cases the effect of macroscopic hydrodynamics boundary layer is negligible. 

With base in the commentaries above we concluded the conservation moment equation describes the classical 

experiments as the conducted by Darcy, (1856), Forchheimer, (1901), Ward, (1964), it’s resumed as, 
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That’s for smaller gradients of , 
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By another way, the modificated expanded Darcy-Forchheimer model for Power-law fluid (Shenoy, (1993)) is: 
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Comparing the equations (45) e (46) the total drag force per volume unity, R, can be expressed by: 
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Where *K , is modificated permeability were proposed by Inoue and Nakayama, (1998), as the follow form: 
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Where pd  is solid particle diameter that’s composing the porous medium. 

Substituting the expression of R in the equation (43) the macroscopic momentum equation becomes, 
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Equation (49) in Cartesians coordinates, in direction e1, becomes the follow form: 
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Where 
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In directions e2, e3, the process of development are analogous. 

 

4. CONCLUSING REMARKS 

 

In this work, the equations have been derived for laminar power-law fluid flow in porous media. Derivations were 

carried out under the light of the method of local volume averaging. This procedure leads to macroscopic transport 

equations set for non-Newtonian fluid. Ultimately, it is expected that additional reseach on this new subject be 

stimulated by the derivations here presented. 
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