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Abstract. In this study, the modeling and numerical simulation of natural convection process in rectangular porous 
cavity, heated from the side, are proposed using a microscopic approach in scale of the order of magnitude of the 
pores. This approach uses the heterogeneous model (or continuous) to idealize the porous medium and consists 
basically of two continuous phases, one is solid and the other is fluid. An idealized domain is formed by a network of 
pores in a solid matrix, represented by solid square blocks equally spaced, disconnected and conducting placed within 
a cavity filled with fluid. The aim of this study is to characterize the natural convection process in cavities filled with 
heterogeneous porous media for different aspect ratios. The conservation equations that model the process (mass, 
momentum and energy) for the solid and fluid phases, are solved numerically through the finite-volume method. 
Results show the effects of varying the number of blocks, the porosity of the medium, the solid-to-fluid thermal 
conductivity ratio and the intensification of fluid recirculation (associated to the Rayleigh number), for shallow, square 
and tall cavities. Investigations are carried out quantitatively in relation to the average Nusselt number of heated 
boundary and qualitatively by the streamlines and isotherms, characterizing the flow and heat transfer through the 
networks of pores. Analytical expressions are obtained to predict the phenomenon of interference between the solid 
obstacles and the boundary layer region, resulting from the increase of the number of blocks, the reduction of the 
porosity, the increase of the height of the cavity and the reduction of the Rayleigh number. 
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1. INTRODUCTION 
 
 Natural convection in porous media has been attracted attention of several areas of science and engineering. Nield 
and Bejan (1998) point various applications, such as in design and optimization of systems, civil engineering (thermal 
insulation of buildings and solar heating), electronics industry (packaging and cooling of cabinets), food industry 
(drying and storing grains), as well in the biomedical area (pulmonary breathing and capillary blood flow). 
 Notably in the petroleum industry, the study of heat transport and percolation in fractured formations as in well 
drilling and production is quite important, mainly due to the intense interaction between fluids and the formation. Such 
interactions, combined with the adverse environment inside the well, can lead to the invasion of drilling fluids through 
the fractures, eventually compromising the productivity of the drilling process. Fractured formations, associated to the 
most of geotechnical and hydrogeological processes, act as hydraulic conductors, as they provide a preferential pathway 
to the flow or, in the other way, as an obstacle to its development through the substrate. 
 Both the geometric and dynamic complexity, found in the transport phenomena in porous media, turn difficult to 
precisely analyze the various characteristics associated to such domains. To perform this task, the mathematical models 
proposed use micro or macroscopic approaches to represent the substrate in the pore or in the fracture scales. 
 The heterogeneous approach, also known in the literature as continuum model, is basically constituted of a solid and 
a fluid portion. Balance equations of conservation and momentum are associated to each constituent. The heterogeneous 
porous domain to be investigated here is a geometric simplification of a real porous medium, being represented by solid 
squared blocks, impermeable, disconnected, heat conductive and uniformly distributed in a squared enclosure filled 
with fluid. Such idealization describes a closed domain formed by a net of connected pores (fractures) in a disconnected 
solid matrix (blocks), representing a microscopic scale in the order of magnitude of the pores.  
 One of the first investigations related to this issue is due to House et al. (1990), which studied the thermal 
conductivity effects on the natural convection in a cavity containing a single, centered block. Merrikh and Mohamad 
(2001) were the first to analyze the effects caused by the presence of multiple blocks inside a rectangular cavity, mainly 
approaching both the geometric arrangement and the thermal conductivity influence over the convective transport inside 
the enclosure, associating these effects to the interference of the solid obstacles over the buoyancy effects present in the 
heated walls. Their observations were supported by the work of Merrikh and Lage (2005), as the latter considered, in 
addition, the effect of the variation of the number of blocks, providing a comprehensive parametric analysis for the 
behavior of the convective process over the interference event, as well as an analytical prediction for the minimum 
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number of blocks, necessary to the existence of this interference. Similar study was performed by Braga and de Lemos 
(2005), in which a comparison between the performance of the heterogeneous (continuum or microscopic) and 
homogeneous (macroscopic) approaches was conducted, in a cavity subjected to the process of both laminar and 
turbulent natural convection. Work of De Lai et al. (2008) investigates, for the first time, the effect caused by the 
porosity variation associated with the number of blocks over the natural convection in a heterogeneous porous medium. 
Extensions of their results were presented in De Lai et al. (2009), which show the parametric analysis for the effect of 
simultaneous variation of thermo-hydraulic properties of the heterogeneous model. Also, a prediction for the minimum 
porosity, necessary to observe the interference of the blocks over the buoyancy region, was presented. 
 In order to complement these studies, the present work proposes to model and simulate numerically the natural 
convection process in rectangular cavities, heated from the side and filled with non homogeneous porous medium. The 
study focuses the variation on the cavity aspect ratio ( /A L H ). The effect of the variation of the number of blocks 
( N ), the porosity ( ), the solid-to-fluid thermal conductivity ratio ( K ) and the fluid recirculation (associated to the 
Rayleigh number, Ra ) for shallow ( 1A  ), square ( 1A  ) and tall ( 1A  ) cavities are analyzed using isolines 
(velocity and temperature) and the average Nusselt number of the heated boundary. Analytical expressions, to predict 
the interference of the blocks over the boundary layer, usually observed in the heterogeneous approach, are presented as 
well. These results form a useful reference for characterization and obtaining synthetic porous media. 
 
2. HETEROGENEOUS MODEL: EQUATIONS AND BOUNDARY CONDITIONS 
 
 Figure 1 schematically represents an idealization of the substrate found in oil and natural gas reservoirs, in which 
both the geometrical complexity common to porous media and the different scales in the representation of a porous 
domain (Figs. 1.b and 1.c) can be observed. Such highly non-uniform geometry turns the numerical simulation a 
difficult task to accomplish, mainly due to the computational effort required to solve the non-linear equations. The 
representation of the heterogeneous porous domain is simplified and the non-dimensional boundary conditions, to be 
used in the mathematical formulation and in the numerical simulations, are presented in Fig. 1.d. 
 The cavity aspect ratio is /A L H , being L  the horizontal length and H  the height of the cavity; U  and V  the 
non-dimensional velocity components in the X  and Y  directions, respectively. The left wall of the enclosure is 
isothermally heated ( H ) and the right one is cooled ( C H  ). Both the bottom and the top surfaces are kept adiabatic, 
so / 0Y    and gravity acceleration g  acts in the vertical direction. The presence of the horizontal thermal gradient 
applied in the vertical walls is responsible for the imbalance between buoyancy and viscous forces. 
 In the present study, the heterogeneous approach represents a microscopic scale at the pore magnitude, in which two 
constituents, the solid and the fluid, are considered homogeneous and isotropic. 
 The solid and the fluid proportion inside the cavity is represented by the porosity, defined as /f TV V    , and 
related to the geometric parameters N , A  and D  (non-dimensional length of the blocks), being fV  and TV , 
respectively, the volume of fluid and the total volume of the enclosure. 
 

 
 

Figure 1. (a) schematic representation of a real reservoir; (b) macroscopic scale of the pore; (c) microscopic scale of the 
pore; (d) geometric idealization of the heterogeneous model and boundary conditions; (e) detail of the solid-fluid 

interface conditions. 
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 In the balance equations formulation of the heterogeneous model, the assumptions are bi-dimensional geometry, 
steady state conditions. The flow is considered laminar, incompressible and monophase. The fluid is assumed as 
Newtonian, without viscous dissipation, with constant properties, except for the buoyancy term of Eq. (4). The density 
variation of the fluid is modeled by the Boussinesq approximation (Nield and Bejan, 1998), which is a suitable 
approach in dealing with natural convection problems. 
 As mentioned early in this text, according to the heterogeneous model, the balance equations consider the solid and 
the fluid domains separately. The momentum equation is solved in the fluid portion and the energy equation regards 
both the solid blocks and the network of pores filled with fluid. Therefore, the dimensionless equations for the 
microscopic approach can be obtained using the following relations: 
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where f  is the thermal diffusivity of the fluid, p  is the pressure and f  the fluid specific mass. 
 The balance equations of mass, momentum ( X  and Y  directions) and energy can be written in dimensionless form: 
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 In the above equations, the following non-dimensional groups are identified: the Prandtl number, Pr , the Rayleigh 
number, Ra , the solid-to-fluid heat capacity ratio,  , and the solid-to-fluid thermal conductivity ratio, K . 
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being f  the fluid kinematic viscosity,   the volumetric thermal expansion coefficient, Pc  the specific heat at constant 
pressure and k  the thermal conductivity (with subscripts f  and s  representing, respectively, the solid and the fluid). 
 In Figure 1, the boundary conditions for the heterogeneous model (Fig. 1.d) and the details of the solid-fluid 
interface conditions can be observed in Fig. 1.e. Therefore, the boundary conditions for the heterogeneous cavity in the 
dimensionless form are: 
 
 if 0 : 0, 1X U V      and if : 0, 0X A U V      (8) 
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and at the solid-fluid interface in the solid blocks, the following boundary conditions are considered: 
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being n  the unit vector perpendicular to the surfaces of each block.  
 Solution of Equations (2)-(6) is performed by means of the control volume method using SIMPLEST algorithm 
(Patankar and Spalding, 1972) for the pressure-velocity coupling. The hybrid scheme is applied to interpolate the 
advective terms. Convergence is achieved whenever the sum of the absolute values of the local residue, of each variable 
(U , V , P  and  ), between two consecutive iterations is less than 61 10 . 
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 The streamfunction   defined by Eq. (11) satisfies the Eq. (2) that represents the mass balance (Kimura and Bejan, 
1983). The numerical values of the streamlines are obtained and shown in module for the lowest value found inside the 
cavity,  . In the solid walls of the cavity 0  . 
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 The dimensionless average temperature gradient, which permits to quantitatively analyze the convective heat 
transfer in a surface, regardless its coordinate, is defined as /av av fNu h H k . The heat transfer in the enclosure is 
described by the estimation of avNu  at the heated wall. Due to the steady and adiabatic conditions at the bottom and top 
surfaces, avNu must present the same value for the hot and the cooled walls. 
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where the averaged heat transfer coefficient, avh , is estimated by the expression " / ( )av av H Ch q T T  , being the heat 
flux at the heated wall given by "

:( / )av f av hq k T x    . 
 
3. RESULTS AND DISCUSSION 
 
 For the proposed model, results are presented for the effect of changes in the values and parameters of Tab. 1. To 
solve equations (2) to (6), unit values for   and Pr  are considered. To investigate the simultaneous variation of the 
thermo-hydraulic properties the familiarization with some geometric characteristics of the cavity is necessary. Porosity 
  remains constant even if N  increase, as the geometric parameter D  is reduced. However, to investigate the 
variation of  , D  must be reduced as   increase, for a certain N . That means the determination of D  is important to 
construct the heterogeneous cavity, which is obtained for a given configuration of N and , through the expression 

1 2[(1 ) / ]D N  , where (1 )  represents the solid fraction. 
 

Table 1. Parameters and values to characterize the heterogeneous model investigated. 
 

A  0.25;  0.5;  1;  2;  4 

Ra  510 ;  610 ;  710 ;  810  

N  1 Bg ; 9 Bg ; 16 Bg ; 36 Bg  

K  0.1;  1;  10;  100 
  0.36;  0.51;  0.64;  0.75;  0.84 

 
 For varying the parameter A  (Fig. 2),   is arbitrated as a constant, due to better interpretation and comparison of 
the results, instead of using the parameter N . Therefore, the idea of the group of blocks, Bg , is introduced to preserve 
the porosity even when varying the cavity aspect ratio, A .  
 

 
 

Figure 2. (a) Variation of A : number of groups of blocks in the vertical ( 1Bg A ), for tall cavity ( 1A ), and the 
horizontal ( Bg A ), for shallow cavity ( 1A ); (b) Detail of non-uniform computational mesh. 
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 Figure 2.a exemplifies the repetition of pattern of blocks in the vertical (tall cavity) and the horizontal (shallow 
cavity) directions, by varying A  for configurations with 16 BN g  . If a squared cavity ( 1A  ), with a group of 16 
blocks ( 16 1N   ) has its configuration changed to 2A  , another group of blocks is introduced in the horizontal 
direction ( 16 2N   ), so the porosity remains constant in both configurations. Therefore, the number of group of 
blocks, Bg , can be identified in terms of the aspect ratio, A . For higher cavities ( 1A  ), 1

Bg A  and the group of 
blocks is repeated in the vertical. On the other hand, when the cavity is wide, 1A   and Bg A , as the group of blocks 
is horizontally repeated.  
 Figure 2.b shows in detail the non-uniform computational grid applied in regions near the isothermally heated walls. 
The refinement observed is based on the boundary layer thickness of the vertical walls, which varies according to the 
Rayleigh number Ra  and the cavity height H . 
 The validation of both the methodology and the numerical code were achieved by comparison with two classic 
configurations found in literature, as observed in Tables 2 and 3. Results for the cavity filled with clear fluid (Table 2) 
and cavity with a single centered conductive block (Table 3) are shown. The proximity between the results gives 
credibility to the numerical modeling here presented, in dealing with the natural convection in heterogeneous domain. 
 

 
Table 2. avNu : validation for the cavity with clear fluid. 

 

Ra  

Kalita 
et al. 

(2001) 
Pr = 0.71 

Merrikh 
and Lage 

(2005) 
Pr = 0.71 

Braga and 
de Lemos 

(2005) 
Pr = 1 

[present] 
Pr = 1 

410  2.245 2.244 2.249 2.258 
510  4.522 4.536 4.575 4.605 
610  8.829 8.860 8.918 8.992 
710  16.520 16.625 16.725 16.890 
810  - 31.200 30.642 31.048  

Table 3. avNu : validation results for single block cavity. 
 

Ra D K

Bhave 
et al. 

(2006) 
Pr = 0.71 

Merrikh 
and Lage 

(2005) 
Pr = 0.71 

House 
et al. 

(1990) 
Pr = 0.71 

[present]
Pr = 0.71

 

510 0.5 0.2 4.645 4.605 4.624 4.625 
510 0.5 5.0 4.338 4.280 4.324 4.320 
610 0.9 0.2 2.326 2.352 2.402 2.415 
610 0.9 5.0 - - 3.868 3.810  

 
3.1. Boundary layer interference 
 
 For problems involving microscopic approaches, the geometric effect due to the presence of solid obstacles, 
provides significant variation in the behavior of the flow and the heat transfer within the enclosures. In the present 
work, this effect can be analyzed and considered mainly in the distance between the first column of blocks and the walls 
of the enclosure, BS , as depicted in Fig. 1.d. 
 As mentioned before, when increasing the number of blocks ( N ) is necessary to reduce the dimensionless length of 
blocks ( D ), for the porosity of the cavity ( ) remains constant. This increase of N  makes the blocks get closer to the 
walls, occupying the regions of boundary layer, providing an abrupt change in the preferential flow path and the heat 
transfer inside the cavity due to the significant effect of the solid interfaces. Therefore, is reasonable to assume the 
existence of a minimum number of blocks, minN , for which higher values of N , the flow is affected in a more 
pronounced way. Thus, the preferential flow path, adjacent to the walls, tends to move to the first vertical channel 
located between the two consecutive columns of blocks, as pointed by Merrikh and Lage (2005). Analogously to the 
conception of minN , it is possible to foresee a minimum porosity, min , for which the transport of fluid and energy in the 
enclosure are more sensible as a consequence of elevating the solid fraction or decreasing  , as concluded by De Lai et 
al. (2009). Such interference can be analytically predicted, by comparing the boundary layer scale for the natural 
convection, CS , with the distance from the heated (or cooled) wall to the solid blocks, given by 

1 2 1 2[1 (1 ) ] /(2 )BS N   . For 1Pr   and just one heated wall, the scale that represents better the boundary layer 
thickness is 1/ 4 ~ / 2CH Ra S  (Nield and Bejan, 1998). The interference of the obstacles over the buoyancy region, as a 
result of increasing N  or decreasing  , is expected when B CS S . By using the ratio between BS  and CS , written in 
terms of Ra , N ,   and H , it is possible to obtain predictions of minN , Eq. (13.a), and min , Eq. (13.b). Table 4 shows 
the predictions of minN  for each configuration of Ra  and A , for 0.64  . 
 

21/ 2 2 1/ 2
1/ 2

2 1/ 4

[1 (1 ) ] 4
(a) ; (b) 1 1

16

H N
N Ra

H Ra

        
 

 (13) 

 
 Notice that the prediction of minN  when 1A   occurs for the same values of N , as the length H  for those 
configurations remains constant. Still in Table 4, the absence of minN  for 510Ra   and 0.25A  , means that the 
ascendant boundary layer (heated wall) and the descendant boundary layer (cooled wall) interfere on each other, not 
depending on the existence of blocks inside the cavity. 
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Table 4. Prediction of ( , , )minN f Ra H  , Eq. 13.a, for 0.64  . 
 

 A   
Ra  

0.25 0.5 1; 2; 4 
510  - 1 3 
610  1 3 10 
710  2 8 32 
810  6 25 100 

 
3.2. Effect of thermo-hydraulic properties 
 
 Results achieved using the heterogeneous approach are analyzed regarding the predictions of minN  and min , due to 
the behavior of the transport of fluid and heat, which varies according to the displacement of the obstacles in the cavity, 
as well as the variation of its thermo-hydraulic properties.  
 As discussed earlier, the placement of the blocks inside the enclosure, can act in a way more or less significant to the 
flow development and, consequently, in the heat transfer, due to its interference on the boundary layers of the 
isothermal walls. 
 In Figure 3 graphs of avNu  versus N  (a1; b1) and versus   (a2; b2) are presented for 610Ra  , regarding four 
values of K . Curves of minN - Eq. (13.a)- and min  - Eq. (13.b)- are depicted to bound the configurations presenting the 
interference in the boundary layer. The dispersion in the K  curves, observed when minN N  or min  , is 
intensified as N  increases or   is reduced. For minN N , the increase of K  implies in higher values of avNu  (a1; 
b1), for N  constant. In the other way, when minN N , the increase of K  provokes no significant variation in avNu . 
In Figure 3 (a2; b2), the higher is  , distinct behaviors due to the K  curves can be observed in the values of avNu . In 
general, for 1K  , the increase of   (a2; b2) strengthens the heat transfer process ( avNu  increases). When 1K  , the 
heat transfer can be dampened as   is raised, possibly due to the competitive effect of 1K   in configurations where 
the conduction is more pronounced than the convection, as in cases of low Ra  and higher values of N . That can be 
noticed in Fig. 3.b2, for 10K   and 100K  . In addition, the reduction of the conduction effect (Fig. 3.b2), when the 
convective transport starts to become more important as   increases, as shown in Fig. 3.a2, as N  was reduced to 9. As 
a remark, cases where min  , meaning that no interference in the boundary layer is verified, steepened values of K  
provoke no significant variations in avNu  (see that Fig. 3.a2 indicates the absence of the interference when 0.61  ). 
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Figure 3. avNu  versus N  (a1; b1) and   (a2; b2) for 610Ra  . 
 

 In Figure 4 (left side), a graph of avNu  versus BN g  is presented for each configuration of A , where the curves 
are set for each Ra , along with the curve of minN , Eq. (13.a), that delimitate those configurations presenting the 
interference regarding the variation of N . The curves of 510Ra   present in Figure 4 confirm the limit for avNu  as N  
is increased. Such limit can be interpreted as a pure conduction regime, commonly observed in cases of low Ra  and 
high N . For those configurations predominantly conductive, one can associate avNu  with the cavity aspect ratio 
through the expression 1

avNu A . On the right side of Figure 4, the streamlines for the some cases of BN g  for 
710Ra  , 0.64   and 1K   are presented, concerning the variation of the aspect ratio A , just aiming to identify the 

changes in the flow configuration as N  increases, and in the same sense, to verify the transition of those configurations 
where the interference can be observed. 



Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 

 
 

Figure 4. On the left: avNu  versus N  (prediction of minN , Eq. 13.a, for 0.64  );  
and on the right: streamlines for various N  and A , for 710Ra  , 0.64   and 1K  . 

 
 In the isolines of Figure 4, it can be noticed that raising the values of A  from 0.5  to 1 , increases the avNu . That is 
due to the reduction of the boundary layer region, which weakens the interference of the blocks. An opposite effect 
(reduction of avNu ) is observed if the value of A  is raised from 1  to 2 , since those configurations present the same 
cavity height ( H ), and by consequence, the same boundary layer thickness ( CS ). Thus, the raise of A  increases L , as 
well the resistance to the flow path. 
 The boundary layer interference phenomenon, that increases with N , is verified in the graphs of Fig. 4, as the avNu  
is reduced right above the curve of minN . This event is characterized by the change in the preferential flow path in the 
cavity, as observed in the streamlines. In general, for minN N , the preferential flow is adjacent to the isothermal walls; 
and when minN N  the flow path turns to the first vertical channel between the two columns of blocks. For 0.5A   
such change in the fluid flow path is expected if 8 minN N  , and becomes more evident as N  increases. When 

1A  , for which 32minN  , the change in the flow can be verified when 36N  . For those configurations with no 
interference ( 32N  ), the preferential flow is adjacent to the isothermal walls. Observe that for 2A   the prediction 
for minN  remains the same as the estimated in the case 1A  . 
 These analysis are complimentary with the results of Figure 5, that show the effect of the aspect ratio ( A ) variation 
over the average Nusselt number avNu , according to different BN g  curves, for a range of Ra . Notice that the 

0BN g   curve shows the avNu  in terms of A , regarding a clear fluid cavity. Indeed, the 0N   curves serve to 
delimit a threshold for the heat transfer, if compared with configurations that present solid obstacles inside the cavity. 
 In Figure 5.a ( 510Ra  , 0,64   and 1K  ), a tendency to reduction of avNu  can be observed as A  increases, 
characterizing a possible connection between the interference phenomenon and the conductive process in the cavity. 
Nevertheless, for 1BN g  , the increase of A  implies in changes in avNu  that do not follow the pattern observed in 
the other configurations of BN g . Increasing A  from 0.25  to 0.5 , a reduction in avNu  occurs, since both 
configurations present the interference phenomenon. On the other way, raising A  from 0.5  to 1 , in which 3minN  , 
the value of avNu  increases as well, since there no interference on the boundary layer when 1A  . 
 An intensification in the flow recirculation and temperature gradients comes out with the increase of Ra , as well 
the narrowing of the boundary layer. In Figure 5.b ( 610Ra  , 0.64   and 1K  ) it is observed that for 1BN g  , 
only the configuration of 0.25A   present the interference on the boundary layer. Thus, there is an increase of avNu  
when compared with 0.5A  . For 1BN g   there is a transition in the tendency of avNu , that for 0.25A   to 

0.5A   presents a reduction of avNu  due to reduction of H  and especially for the competitive effect between the 
interference phenomenon and the intensity of the magnitude of the boundary layer. This effect is better visualized for 

16BN g  , that even for configurations of 0.5A   and 1A   presenting the interference on the boundary layer, the 
increases in A  resulting in an increasing of avNu , due to the higher effect of the convective process in the cavity for 
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1A   that for 0.5A  . Note that when BN g  is increased to 36  there is an increase in the conductive process due to 
the increase of solid obstacles in the flow. Consequently, there is an interference effect in the boundary layer more 
significantly, causing an attenuation in the increase of avNu  according to the increase of 0.5A   to 1A  . From 1A   
to 4A   is observed the reduction tendency of avNu , previously observed by the increase of L . 
 In Figure 5.c ( 710Ra  , 0.64   and 1K  ) is more evident the competitive effect between the interference of the 
blocks with the intensity of recirculation flow. For 1BN g   observed that the value of avNu  is practically the same as 
for the clear cavity. As BN g  is increased it is possible to observe the tendency of avNu  with the increasing of A , that 
unlike 0.25 1A   configurations with 1 4A   show a tendency of avNu  for a given N , due to the same boundary 
layer thickness CS . It is observed with increasing A  the reduction of avNu  due to the increase of length L , that 
increases the distance between the isothermal walls, hindering the heat transfer and recirculation flow, presenting a 
more significant manner as N  is increased. 
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Figure 5. avNu  versus A  for 0.64   and 1K  : (a) 510Ra  , (b) 610Ra   and (c) 710Ra  . 
 
 Figure 6, for 510Ra   and 36 BN g  , shows the isotherms (a) and the streamlines (b) for the configurations 
where the conductive process is dominant, the evolution of the isolines, as well the values of avNu  can be observed for 
all aspect ratios. The vertical stratification of the isotherms (Fig. 6.a) and the small magnitude of fluid recirculation 
through the cavity characterize the conduction dominant process. That can be confirmed by observing the uniformity of 
the streamline profiles (Fig. 6.b). These observations are corroborated by the results of Fig. 4 (left), which shows avNu  
values varying with A , Ra  and N , where the tendency to the pure conduction limit can be noticed in avNu  values, for 
low Ra  and high N . Thus, the presence of solids in the buoyancy region is evident when minN N , which 
significantly influences the reduction of avNu  towards the conduction regime. 
 In opposition to those cases shown in Figure 6, the configurations considered in Figure 7 are illustrative of 
convection dominant situations, found in cases of high Ra  and low N . Figure 7 shows the isolines when 810Ra   and 

9 BN g  , with avNu  values varying with the aspect ratio, A . The vertically stratified isotherms (Fig. 7.a), an 
indication of a convection dominant process, is confirmed by observing the high magnitude of flow circulation and also 
the anti-simmetry of the streamlines (Fig. 7.b).  
 Based on the Table 4 (prediction of minN ) is evident that only the configuration 0.25A   presents interference in 
the boundary layer, as for this configuration one has 6minN  . For other aspect ratios the blocks do not present any 
interference, and in this sense, the flow is developed adjacent to the isothermal walls. It is worth mentioning again the 
similarity of the evolution of the profiles of isolines (isotherms and streamlines) with the increase of 1 4A  , 
precisely because the same boundary layer thickness, differing only in the extent of the isolines profile due to the 
increase of L . 
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Figure 6. (a) isotherms and (b) streamlines: variation of /A L H  for 510Ra  , 36 BN g  , 0.64   and 1K  . 
 

 
 

Figure 7. (a) isotherms and (b) streamlines: variation of /A L H  for 810Ra  , 9 BN g  , 0.64   and 1K  . 
 

4. CONCLUSIONS 
 
 The natural convection process in heterogeneous cavities has been numerically analyzed to verify the influence of 
parameters Ra , N , K ,   and A . When the blocks are close to the walls, from the increase of N  or reduction of  , 
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they can eventually interfere with the boundary layers. This effect is anticipated on the basis of a scale analysis result 
predicting the boundary layer thickness. The analytical expressions for minN  and min  are obtained in order to predict 
the cases in which the change in the flow path will occur, where verified with good accuracy by numerical results. In 
general, for configurations without the presence of interference of the blocks on the boundary layer ( minN N  or 

min  ), the increase of K , does not present any significant variation in avNu  values. Nevertheless, for configurations 
where the interference can be observed ( minN N  or min  ), the increase of K  enhanced the heat transfer across the 
cavity. For 1K  , the increase of   strengthens the process of heat transfer in the cavity, due to reduction in the 
proportion of solid obstacles. Depending on the magnitude of the increase in K , an augmentation in   can reduce the 

avNu . Such occurrence is related to the prominence of conduction effect, which prevails over the convection one, 
provided by 1K   as solid blocks are placed near the vertical walls. In the variations of the aspect ratio ( A ) here 
presented, only simultaneous effects on Ra  and N  are investigated, as the parameters K  and   remained constant. 
Numerical results are analyzed according to minN  predictions. In general, for 0.25 1A   (tall cavity), the boundary 
layer thickness, ( , )CS f Ra H , increases if compared to 1A  . For 1A   (shallow cavity), CS  is constant and, in this 
case, the interference is verified always for the same value of N . In summary, as A  is increased, the heat transfer 
presents distinct behavior regarding the presence of blocks in the boundary layer. Configurations where minN N , an 
increment of A , for a certain N , present a reduction of avNu , due the reduction of the cavity height H  (in cases 
where 0.25 1A  ) and the increase of L  (in cases where 1 4A  ). Cases in which minN N , an increment of a 
certain 0.25A   to 1A  , point an increasing of avNu . That it is explained by the greater interference of the blocks on 
the boundary layer, as A  is decreased. For the increase from 1A   to 4A  , the values of avNu  are reduced, as these 
configurations present the same values of CS , being affected by the increase of L  (the flow path is increased). In 
configuration where the conduction process is dominant, as in the cases of low Ra  and high N , characterized a pure 
conduction regime. For those configurations predominantly conductive, one can associate avNu  with the cavity aspect 
ratio through the expression 1

avNu A . 
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