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BED-FORMSIN RIVERS: INSTABILITIESOF A GRANULAR BED
SHEARED BY A FREE SURFACE TURBULENT FLOW
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Abstract. The transport of granular matter by a fluid flos/frequently found in nature and in industry. Whes shear

stresses exerted by the fluid flow on a granulat &es bounded to some limits, a mobile granulaetaynown as bed-
load takes place in which the grains stay in contaith the fixed part of the granular bed. Undeesle conditions, an
initially flat granular bed may be unstable, gentimg ripples and dunes, such as those observe@serts, in rivers,
but also in pipelines conveying sand. In a recetitle (Franklin, 2010a), the mechanisms of thessdbilities were

explained and a linear stability analysis was prése, showing, for the first time, a scaling betwélee fluid flow

conditions and the length-scale of the initial Hedns. This analysis didn't take into consideratidinee surface
effects. In another recent article (Franklin, 20)0a non-linear stability analysis in the same seagf Franklin

(2010a) was presented, shedding light into thewiai of the bed-forms after their initial (lineaphase. Franklin
(2010b) showed that, after the initial phase of itietability, some non-linear modes interact (res@) with the initial

granular bed undulations, and there is saturatidnttee bed-forms amplitude. This explains why in s@ases the
wavelengths predicted by the linear theory are gmeament with bed-forms measured in nature, cleamlthe non-
linear phase. The aim of this communication is tespnt a simplified analysis, based on Franklin 1@2&) and

Franklin (2010b), of the effects of the free suefac the determination of the size of bed-formgp{gs and dunes)
observed in nature. Typical examples are rippled dnnes observed in rivers
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1. INTRODUCTION

The transport of solid particles entrained by &fflow is frequently found in nature and in indystlt is present,
for example, in the erosion of river banks, in thigplacement of desert dunes and in hydrocarboglipgs conveying
sand. When shear stresses exerted by the fluiddiothe granular bed are able to move some griainisre relatively
small compared to the grains weight, the flow is atale to transport grains as a suspension. Insteawbile layer of
grains known as bed-load takes place in which tlang stay in contact with the fixed part of thamslar bed. The
thickness of this mobile layer is a few grain digeng (Bagnold (1941), Raudkivi (1976)).

An initially flat granular bed may become unstabled give rise to bed-forms when submitted to adflilibw.
These forms, initially two-dimensional, may growdagenerate patterns such as ripples or dunes. tirenasome
examples affecting human activities are the aediash the aquatic dunes. The aquatic ripples anéslohserved on
the bed of some rivers create a supplementarydinidietween the bed and the water, affecting theemadepth and
being related to flood problems. In cases wherg #iee is comparable to the water depth, watexglean experiment
strong depth variations, seriously affecting natrara(Engelund and Fredsoe, 1982). In industryaplas are mostly
related to closed-conduit flows conveying grainghsas hydrocarbon pipelines conveying sand. Ih sases, the bed-
forms generate supplementary pressure loss, botpatssure and flow rate transients (Kuru et &95] Franklin,
2008).

The stability of a granular bed is given by theabake between local grains erosion and depositiothere is
erosion at the crests of the granular bed, the itudpl of initial bed undulations decreases andbetis stable. On the
contrary, the bed is unstable. If there is neigresion nor deposition at the crests, there israkstability. The regions
of erosion and deposition can be found from thesncamservation of grains. The mass conservatiotigsphat there
is erosion in regions where the gradient of thevftate of grains is positive and deposition wheie hegative, so that
the phase lag between the flow rate of grains hedyéd-form is a stability criterion. If the maximuwf the flow rate of
grains is upstream a crest, there must be depositithe crest and the bed is unstable, othenhisd¢d is stable. To
answer the stability question, the mechanisms ia@at phase lag between the shape of the granethabd the flow
rate of grains need to be known.

The instabilities of a granular bed give rise faptes and dunes, that are deformed and displacdiaebijuid flow,
so that they can be viewed as waves that develgpaise and in time. In these cases, it is freguwepérform temporal
stability analyses, the spatial and temporal aeal\seing related by th@aster Relation(Schmid and Henningson,
2001; Drazin and Reid, 2004; Charru, 2007).

In a recent article (Franklin, 2010a), the mechasisf this instability were explained and a linstability analysis
was presented, in the specific case of granulas lsb@ared by turbulent boundary-layers of liquidihout free-
surface effects. It was seen that the basic mesimsnare three: the fluid flow perturbation by thape of the bed,
which is known to be the unstable mechanism (Jacksal., 1975; Hunt et al., 1988; Weng et al.,1)9¢he relaxation
effects related to the transport of grains andgtiaeity effects, which are the stable mechanisnmagice and Langlois
(2005) and Charru (2006) in the case of viscousd|oFranklin (2010a) in the case of turbulent flpwBhe linear
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stability analysis of Franklin (2010a) showed tttet length-scale of the initial bed-forms varieshwihe fluid flow
conditions.

Franklin (2010b) presented a nonlinear stabilitglgsis in the same scope of Franklin (2010a). Tow@ach used
was the weakly nonlinear analysis (Landau and litif¢cl1994; Schmid and Henningson, 2001; Drazin Redl, 2004;
Charru, 2007), useful whenever a dominant modebeaproved to exist. This means that the modes atisgnwith
this dominant one will grow much faster than thbeos, which can be neglected. The analysis is thade on a
bounded number of modes. Franklin (2010b) showed #fter the initial exponential growth (linear pby the
granular bed instabilities saturate, i.e., thegratate their growth rate and maintain the same leagth.

In both articles, Franklin (2010a) and Franklin 1@D), the results of the analysis were comparedadime
experimental data concerning ripples in closed-a@nflows (which is a case without free-surfaceeet§). In
particular, the dependence of the wavelength orltiek flow conditions and the saturation of theddflerm amplitude
were confirmed by experimental results. Nevertleléise analysis of Franklin (2010a) and Franklidl@b) are not
directly applicable to cases were free surfacectffare expected, such as the large wavelengttiooed- (dunes) in
river flows.

This communication presents a simplified analybased on Franklin (2010a) and Franklin (2010b),thef
instabilities on a granular bed in the presencéraed surface effects. The main purpose is to utaledsthe size of
ripples and dunes observed in nature. Typical elesrgre the ripples and dunes observed in rivers.

The next two sections present a summary of thaliseability analysis of Franklin (2010a) and of thonlinear
analysis of Franklin (2010b), respectively. Thddaling section discusses the free-surface efféetdbth analyses. A
conclusion section follows.

2.LINEAR ANALISYS

Franklin (2010a) presented a linear stability asialyof the initial bed-forms on a granular bed skeéaby a
turbulent liquid flow, without free-surface effect§he stability analysis was based on four equati@md a brief
description is given below. Please, refer to Friani2010a) for more details concerning the lingabity analysis.
The four basic equations employed in the analyssidbe the fluid flow perturbation by the shapdhaf bed (Eq. 1),
the gravity effects (modeled in the previous eaqumgti the transport of granular matter by a fluiowfl (Eq. 2), the
relaxation effects related to the transport ofigdEq. 3), and the mass conservation of granusdrem(Eq. 4).

For a hill with a heighh, a surface rugosity, and a lengtt2L between the half-heights, the perturbation of the
longitudinal shear stress (dimensionless) causeth®yfluid on the bed can be written as (Jacksah Huant, 1975;
Hunt et al., 1988; Weng et al., 1991)

. (10,
f= BA(]—T | r{da Beath (1)

where¢ is an integration variable a8l = B — B/Ba (the termBy/B, was introduced in Franklin (2010aj8, andB
come from the fluid flow perturbation and are coesed as constants as they vary with the logarihiny,. By is a
coefficient taking into account the weight of theaigs (gravity effects) and the friction betweeernt) and is also a
constant. If the perturbation is supposed smallpamed to a basic flow, the fluid flow over the beh be written as
the basic flow, unperturbed, plus the flow perttidra For the shear stress on the bed surfaf.eo(1+ f) wherer, is

the shear stress caused by the basic flow on theHoe a developed turbulent liquid flow over argrar bed, the basic
flow is a rough turbulent boundary-layer, which ntgee bed has the well known logarithmic profile- y,x™ Iog(yygl)

wherex is the Karman constani(y) is the unperturbed velocity profile aodis the friction velocity.
The flow rate of grains in equilibrium with the ituflow is known as “saturated flow rate of grainftom Bagnold
(1941)

q%saf(“f)% )

wheregsy is the saturated volumetric flow rate of grainsumjt of width andQs,is the saturated volumetric flow rate of
grains by unit of width over a flat surface (basiate). If the fluid flow over the bed changes, flo& rate of grains
will lag some distance (or time) with respect te fhuid flow (relaxation effect). Charru et al. (4) proposed for the
local volumetric flow rate of grains, by unit ofdth
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wherelL _ ~L, = d(u*U gl) is a distance called “saturation lengttlis the mean grain diameter adglis the typical
settling velocity of a grain. Finally, the two-dim&onal mass conservation of grains is

d,h+d,q=0 (4)

Given the small character of perturbations, thetsmhs of the preceding equations are plane waMes.bed height
h and the flow rate of grairggcan be decomposed in their normal modes

h(X,t) - H eot—iax+ikx (5)
a(x,t) _ ot —iat +ik
/Qsat =1lrQe (©)

whereg is the growth rate is the frequency ankd is the longitudinal wave-number. Inserting Eqgy gBd (6) into
Egs. (1), (2), (3) and (4), the growth ratand the phase velocitrw/k of instabilities can be obtained from the non-
trivial solution

- 3Qsatk12(Be B BA‘k\‘ Lsat) (7)
2+ (kL))

c= 3Qsat‘kl‘(BA + Be‘k“ Lsat) (8)
2+ (kL))

The most unstable (or amplified) mode is the orewhich instabilities grow faster, correspondinga%kzo

.From Eq. (17), we obtain

Ao = S L ©
2B,
2B° 1 (10)
O == (B, - 2)Qu,——
max gBi ( A )Qsal Lsalz
B 1
max EAQsat Lsat (11)

where the subscriphaxis related to the most unstable mode.

The stability analysis showed the existence of laage instability, with the fluid flow conditionshe relaxation
effects and the gravity effects playing an impadrtesie. The saturation length-scalg,, related to the relaxation
effects, was seen to be the major responsiblehostabilization of small waves, also playing arol the growth rate,
that varies agr _ ~L_ 2. On the other hand, gravity was seen to play dlemale in the stabilization of small waves,

but to strongly affect the growth rate. Changegshia fluid flow were seen to cause variations in gnewth rate
proportional to the shear velocityy _ ~u, .

The most relevant result of the analysis of Franki010a) concerns the dependence of the wavelerfigtie most
unstable mode on the fluid flow conditions. Theelin analysis showed that wavelength scales withfltie flow
asj__ ~u.. Figure 1, extracted from Franklin (2010a), shakes dimensionless growth rat& and the dimensionless

phase velocity/Us of the initial perturbations versus the dimensisslwave-numbédl,, wheret;=d/Us is the typical
settling time. In this figure, the continuous cww®rrespond to a baseline, whdrdmmandB,=0 (no gravity effect),
and the dashed curves correspond to variatiorteistear velocity- (fluid flow effects): dashed curves corresponding
to values ofu. equal to half of the values used in the continunwyes. Becausds andd are the same in both cases,
the saturation length varies lag; ~ u- , which means that in the dashed curygis half of the value for the continuous
curve. For the most unstable mode, Fig. 2 showsatliecrease in- by a factor2 implies a decrease in the wavelength
Amax@nd in the growth rate, ., by a factor2, and a decrease in the phase velagijty by a factod.
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Figure 2. Dimensionless growth raftig and dimensionless phase velodaitys of the initial instabilities versus the
dimensionless wave-numblel,, in the case of fluid flow variation. Figure exttad from Franklin (2010a).

Different from previous stability analysis for tulent regime, it was proposed in Franklin (2010t tthe initial
wavelength varies with the flow conditions of therrger liquid. This could explain, for the firsinte, some previous
experimental results.

3. NON-LINEAR ANALYSIS

Franklin (2010b) presented a nonlinear stabilitglgsis in the same scope of Franklin (2010a). Tpr@ach used
was the weakly nonlinear analysis (Landau and litif¢cli 994; Schmid and Henningson, 2001; Drazin Redl, 2004;
Charru, 2007), useful whenever a dominant modebeaproved to exist. This means that the modes agismnwith
this dominant one will grow much faster than thbeos, which can be neglected. The analysis is thade on a
bounded number of modes.

In the case of a granular bed sheared by a turblidgid flow, Franklin (2010b) wrote the normal des as

h(x,t) = % i A, (t)e™ (12)

n=-oo

where A =ae'’ = A

Franklin (2010b) then expanded Eq. 2 in a TayloieseuntilO(?) and replaced the first term in the RHS of Eq. 1,
the convolution product, by a linear termhinAs noted by Andreotti et al., 2002, this convintproduct is a non-local
term that varies with the shape of the bed. It ten be replaced by a bed dimensionless shdpewherel is a

characteristic length of the bed-form). Combinihg expansion and the replacement of the convolyfoduct with
Egs. 1 to 4, we arrive in the following equation

o.h+B,(h) +B,(0,hf + B;hd,h+ B,h+BA,h+B, =0 (13)

whereB; to Bs involve Qg Lsa, L and constants, so that to Bsare only functions ofi- andd, and they may be treated
as constants in an analysis of a given granulashbchitted to a given fluid flovBg is a constant, obtained froomn- H*
(Franklin, 2010a). Normalizing the problem by itscacteristic lengthk(’), and inserting the normal modes of the form
of Eq. (12) in Eq. (13) gives

1< dA

+=3 YleAja]der g =0

p=—c Q=-c

+AB, + iBsnAh}einx +% i[AfBl + Bz(inAh)Z]ez"‘X +

(14)

By inspecting Eq. (14), we can see that it is thiedtterm in the equation that can resonate withlithear part (in
the first term). This resonance will only occugif p = n. In this case, the third term in eq. (14) can bigten as

23 YleaAler ()

n=-c p=-co

and, keeping in Eq. (14) only the terms that resonéth the linear part, we find
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whereg, = (B, +inB,)

From Eg. (16), it can be seen that the non-linieariare in the third term. If this term is neglectee find that the
solution is stable fos,<0 and unstable fo#,>0. Once the initial (linear) instability takes platiee perturbations grow
in an exponential way and, after a time-scale etpual*, they can no-longer be analyzed by a linear amtroa order
to better understand the behavior of the nonlipeat of Eq. (16), we can analyze the first two nsde

B -0 -BiaA +o(x) an

dAZ =0,A, - B,iAZ +O(A) (18)

Forn >1, on the onset of the instability, the temporalivsives vary withg, A, << |an|,6\1 (due to the dominant
effect of the fundamental). The time derivatives/rtteen be neglected for>1

A =2z woln) (19)

Inserting Eqg. (19) into Eq. (17), we can find aruaipn for the fundamental similar to the Landaw&ipn
(Landau and Lifchitz, 1994; Schmid and Henning8iQ)1; Drazin and Reid, 2004; Charru, 2007)

B =0, -k AlA[ +0() (20)

where K, = _B% > - This corresponds to a supercritical bifurcatiGefidinning, 1999; Charru, 2007): the nonlinear
2

term resonating with the linear one will saturabe tnstability, so that, after the initial exporiahtgrowth, the

instability attenuate, reaching a finite value fbe amplitude and maintaining the same wavelengthifurcation

diagram can be drawn in order to visualize theratitn of the fundamental mod& as a function of a control
parameter (Glendinning, 1999).

Figure 2 shows the bifurcation diagram for the fuméntal mode (dimensionless amplitude modisversus the
dimensionless linear growth ratg) for a fixed value of the Landau constaqt1). The continuous curves correspond
to stable states (attractors) and the dashed canvesponds to the unstable states. From Fig.Zanesee that this is a
supercritical bifurcation, the diagram correspogdia the well known supercritical pitchfork bifutean. So, after the
initial exponential growth (linear phase), the gran bed instabilities saturate, with their ammgufollowing the
bifurcation diagram of Fig. 2, but keeping the samaarelength.
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Figure 2. Bifurcation diagram for the fundamentalda (amplitude modulug\| versus the linear growth ratg
normalized by their maximum values, respectivelyje continuous curves correspond to the stabless{attractors)
and the dashed curve corresponds to the unstaiées sThis diagram corresponds to the well knowechfmrk
bifurcation. Figure extracted from Franklin (2010b)

4. FREE-SURFACE EFFECTS

In the two previous sections, the effects relatethe presence of a free surface were not considetewever, in
many cases of practical and environmental intetbst,presence of a free surface must be takenaiotount. One
example is the presence of dunes in rivers whopéhde of the same order of the dune wavelengthhigcase, free-
surface effects affect the fluid flow near the beds known from measurements in the field thasiich cases there are
at least two characteristic wavelengths, one sgaliith the grains diameter and with an inner laglese to the bed (but
not with the flow depth, as they are too smalllj another scaling with the fluid flow depth.

In the last decades, many stability analyses haea bone in order to understand the wavelengthtaendelerity of
dunes in rivers (Kennedy, 1963; Reynolds, 1964;dhingl, 1970; Richards, 1980; Engelund and Fred$682;
Coleman and Fenton, 2000). The great majority eb¢hworks found that the wavelength of the initistabilities
scales with the liquid depth, i.e., there wouldaerimary instability affected by free-surface effe This primary
instability should be strong enough to allow thevgih of bed-forms whose length scales with theitiglepth.

Richards (1980) performed a linear stability anialykat showed the presence of two unstable mages:scaling
with the liquid depth (dune mode) and the othetisgawith the grains diameter, but independenthef free-surface
(ripple mode). He proposed that both modes wouldrgmas a primary instability.

Recently, Fourriére et al. (2010) presented a fisézbility analysis for bed-forms in rivers, irrttulent regime. In
their analysis, they found that the ripple modetifodit free-surface effects) has a growth rate niangs greater than
the dune mode (with free surface effects). Alseytfiound a wavelength range where the growth mtstriongly
negative, corresponding to wavelengths of the oodi¢ne liquid depth. They called this range “resoce region”. Any
bed-form in this wavelength range has a strong thaggrowth rate.

Fourriére et al. (2010) showed that the time st@lg¢he growth of dunes as a primary linear indighis greater
than that for the appearance of dunes by the amles of ripples (which have a much faster grovete rand
evolution). As a consequence, dunes observed ersrigre the product of a secondary instability Itegufrom the
coalescence of ripples. These dunes grow untilhiegca length-scale in the resonance range, winstie growth is
stopped by free surface effects. In summary, tbend that ripples appear as a primary linear inigtykhat eventually
saturates (but they do not prove the saturatiom, that dunes appear as a secondary instabilityltiregs from the
coalescence of ripples (unstable mechanism) anfiebesurface effects in the resonance range éstabthanism).

This section is devoted to the understanding obfi:forms observed in fluid flows with a free-gwé, such as the
flows in open channels and rivers. We know fromvjnes works that in such cases there are at leastharacteristic
wavelengths, one scaling with the grains diamenelr \sith an inner layer close to the bed (ripple Bjpdnd another
scaling with the fluid flow depth (dune mode). Thpple mode isn't affected by free-surface effeds, that the
stability analyses made in sections 1 and 2 arié @t this case: we can predict the initial insliébs and saturation
with the presented models. The dune mode, as peddmsthe recent work of Fourriére et al. (201€)0nsidered here
as a secondary instability resulting from the cotitip@ of ripples coalescence and free-surfacectste
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Figure 3. Definition of the ripple mode and of thene mode: the ripple wavelength is much smallen tihe liquid
depth, and the dune wavelength is comparable tbchiel depth.

With these considerations, the ripple mode is veskiablished by sections 1 and 2. We need justnid the
resonance region to find the equilibrium lengttihef dune mode, i.e., we need to combine the frdfacieffects with
the models presented here. In free-surface flomws valid reasoning is that, as dunes grow by ripptealescence, their
length become comparable to the liquid depth. énldbginning, this affects the free-surface in ecdtibal regime and
excites gravity waves in the free surface in ahtige with the dunes (186ut-of-phase). If they keep growing, they
would eventually reach a supercritical regime, Vitwich the excited surface waves are in phase Wighdunes (Dout-
of-phase). But the dunes have their growth rat@pstd in a region around the transition from sulmaiitto
supercritical: in this region, the excited surfagaves are out-of-phase by nearly’ $8gging the dunes, resulting in
erosion in the crests. This region dictates theatharistic length of dunes.

Ho| 0, —
/_\h
Figure 4. Definition of the free-surfagethe dune height, the liquid deptiH and the fluid velocityJ. The
subscript0 corresponds to the fluid flow over a flat bed.

This reasoning can be incorporated mathematicalihé model presented in sections 1 and 2 in alsimpy, in
order to give us the scales of length and cel@ftthe dune mode. One simple approach to understendffects that
the free-surface may cause on the fluid flow ispproximate the fluid flow far from the bed (abdhe logarithmic
layer) as a potential flow. With this approximatiome can estimate the behavior of the free-surfacegplying the
mass conservation and the Bernoulli equation tootemgial liquid flow. Equations (21) and (22) apglye mass
conservation and Bernoulli equation, respectividy the two-dimensional flow depicted in Fig. 4.these equations,
the subscrip corresponds to the fluid flow over a flat bed.

U(H, —h+7)=UH, (21)
u?2 U2 (22)
— + =
2 9 2

Considering small aspect ratio dunes (in naturdimee usually an aspect ratio betwe@®1and0.1), an expansion in
power series may be built with the small param@tt.—*zr%_| , WhereU,, Ug, naandna areO(1).
0

U=U,+&J, +0(?) (23)
1=n,*éng +O(€2) (24)

Inserting the expansions (Egs. 23 and 24) in Ei9.4nd (22), and separating the terms by theiersrdve find
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U,+U,"A=u, 25
oM: Ho (25)

1
SUR*tan,=2Us

whereU, = Ug andna = 0 can be a solution (and it is physically expectdd)O(e)

- s Us , _
o(e): U,+U, Ho +Ug + HOnA—O (26)
UUg +075=0

The solution of the system given by Eq. (26) g =H,(Fr?/(Fr?-1)) and u, =-U,(/(Fr? -1)). where
Fr :Uo/ /gH, is the Froude number: the ratio between the mean flelocity and the celerity of surface gravity
waves. From Egs. (23) and (24), the solution cam ne written:

U:U{ —L( ! ﬂ+0(52) (27)
Ho\Fr<-1
_ _Fr? 2 (28)
n h(Fr2_1]+O(£)

Equations (27) and (28) are sufficient for the dgsion of the wavelength of the dunes proposed hyeever, a
simplified transport model together with the mageservation (Eq. 4) may give us some informatiooutlbhe celerity
of the dunes. Supposing, that the shear stres$@rbed is proportional to the square of the medacitg, and
approximating the bed-load flow rate by Eq. (2), may write the bed-load flow rate ag=CU?®, whereC is a

constant. In this case, Eqg. (2) gives

@ + CO @ =0 (29)
ot 0x

where the ternt, corresponds to

C:_:%CUZUO 1 (30)
° Hy, Fri-1

Equation (29) corresponds to a wave propagatiomtému for the bed-form, with the celeriG,. We analyze now
the effects on the free-surface and on the grathddrbased on Egs. (27), (28) and (30).

- Case I: subcritical flow

In this caseP<Fr<1, which implies thay<0 andU>U,. This means that the free surface above the bed-f® a
trough, and that the mean velocity is acceleratethé crest region. The surface gravity waves 8@ tut-of-phase
with respect to the bed-forms. The maximum of tliédfvelocity is around the crest, with an upstreant-of-phase
component that this simplified model is not capablebtain (so that the fluid flow is an unstableahanism). Also, in
this caseCy>0, so that the bed-forms have a downstream celdfitym these characteristics, we can conclude that
those forms are dunes (Engelund and Fredsoe , 1982)

- Case Il supercritical flow

In this caseFr>1, which implies thaty>0 and U<U,. This means that the free surface above the bed-f® a
bump, and that the mean velocity is deceleratetiérbed-form crest region. The surface gravity vsaaee 6 out-of-
phase with respect to the bed-forms The minimurtheffluid velocity is around the crest, with an wnpam out-of-
phase component that this simplified model is rgtable to obtain. Also, in this ca€g<0, so that the bed-forms have
an upstream celerity. From those characteristies,can conclude that those forms are the usuallecta@nti-dunes
(Engelund and Fredsoe , 1982).

- Case lll: transition
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In this caseFr~1. In this region, the excited surface waves areodythase by nearl90° lagging the dunes. This
means that the maximum flow velocities are shiftednstream the bed-form crests, implying erosiothencrests and
stability (the fluid flow is a stable mechanismtivis case). This condition bounds the length-soltunes by means of
the surface waves and bed-form interaction, andhisrreason it is called a resonance region.

It is considered here that dunes are a secondstiahittity, i.e., they are generated from the caadase of ripples. In
this case, as the dunes grow up the local valu€s afcrease and tend ter~1. WhenFr=1, the fluid flow becomes a
stable mechanism, limiting then the size of dunes.

From this, we can conclude that the wavelength. and the celerity of duneGy,, in the presence of a free-
surface, have the following scales

p) H, (31)

dune
_3cU; 1 (32)

C ~
dune H, Fr2-1

5. CONCLUSIONS

The transport of granular matter by a fluid flowfisquently found in nature and in industry. Whéwe shear
stresses exerted by the fluid flow on a granular & bounded to some limits, a mobile granulaeddnown as bed-
load takes place in which the grains stay in cdntath the fixed part of the granular bed. Undezgé conditions, an
initially flat granular bed may be unstable, getiagaripples and dunes, such as those observedsarts, but also in
pipelines conveying sand.

It is known from observations in rivers and in ogvannels that two different kinds of bed-forms nuaexist.
Those forms have different wavelengths, one scaliitly the grains diameter and with an inner laylese to the bed
(but not with the flow), called ripple, and anotlsealing with the fluid flow depth, called dune. Maprevious works
were made in an attempt to understand the gengratid evolution of these forms, but until now therenot a real
consensus about it.

This paper presented a complete model capablesttighithe formation and the evolution of sand patgebserved
in rivers and in open-channels. Based on previooksv(Franklin, 2010a; Franklin, 2010b; Fourriéteak, 2010), it
was argued here that ripples are a primary linestability, which saturate with the same wavelergedicted by the
linear analysis, and that dunes are a secondambitisy, formed by the coalescence of saturatpgles.

The ripples formation and evolution were alreadgsented by Franklin (2010a) and Franklin (2010w arbrief
description was made here. To obtain the lengtlescd dunes, a simplified model was proposed (ptsEen
approximation far from the granular bed surfaca),which the coalescence of saturated ripples is uhgtable
mechanism, and the fluid flow, influenced by fregface effects, is the stable mechanism. It was #@wn that near
the subcritical — supercritical transitioRy~1, surface gravity waves are out-of-phase in sucimaamner that the
maximum of the fluid velocity occurs downstream thest, so that the flow is a stable mechanism vifred.

Finally, it was proposed here the scales for theelength and celerity of ripples (the same fromnktia (2010a)
and Franklin (2010b)) and for the wavelength arldritg dunes.
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