
Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 

THE CONCEPT OF ENTRANSY AND ITS UTILIZATION IN THE 
ANALYSIS OF PROBLEMS IN THERMODYNAMICS AND HEAT 

TRANSFER 
 

Santiago del Rio Oliveira, santiago@utfpr.edu.br 
Universidade Tecnológica Federal do Paraná, UTFPR, campus Cornélio Procópio 
 
Luiz Fernando Milanez, milanez@fem.unicamp.br 
Universidade Estadual de Campinas, UNICAMP 
 
Abstract. The concept of entransy was recently proposed in terms of the analogy to the electric energy stored in a 
capacitor. The entransy of a system describes its heat transfer hability, as the exergy of a system quantifies its work 
production potential. Hence, the concept of entransy can be useful in problems where the heat transfer is the main 
objective, as for example, in systems collecting solar energy. This concept is very recent and there are only a few works 
related to this topic. It is expected, however, that this approach will soon become of extreme importance in the analysis 
of problems in thermodynamics and heat transfer. The objective of this work is to present a review of the concept of 
entransy in a systematic way, beginning with its definition, balance equations and a few examples of simple 
application. It is hoped that this concept of entransy be widely spread in the scientific community and efforts be 
directed in the sense of improving the thermal sciences. 
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1. INTRODUCTION 
 

Designers are always seeking new methods to improve heat transfer techniques in several fields of engineering. 
These methods can intensify the efficiency of energy utilization or to reduce the weight and dimensions of heat transfer 
equipments. For example, the utilization of high thermal conductivity materials can enhance the heat transfer rate by 
conduction, as well as an increase of the fluid velocity can enhance the heat transfer rate by convection.  

There are several techniques to calculate the heat transfer rate, but there is not a concept to quantify the efficiency of 
these processes because in heat transfer problems the input data (for example, high thermal conductivity material or 
high fluid velocity) has different units than the output (augmentation in the heat transfer rate or reduction in the 
temperature difference). Therefore, a heat transfer process can be improved, but the question is how to optimize a heat 
transfer process. 

Thus, there was a need to develop a concept to allow the analysis and optimization of heat transfer processes. This 
concept was recently proposed by Guo et al. (2007). The authors presented the concept of a new physical quantity, 
defined as “entransy”, that can be used to define efficiencies for a heat transfer process and to optimize heat transfer 
processes. The word “entransy” is derived from the expression “energy transfer efficiency”.  

According to Guo et al. (2007) the entransy of a system describes its ability to transfer heat, in the same way that the 
electric energy in a capacitor describes its ability to store electrical charge. Dissipation of entransy occurs during heat 
transfer processes and is a measure of the irreversibilities due to heat transfer. The concepts of entransy and entransy 
dissipation were used to develop the principle of maximum entransy dissipation, used in the optimization of heat 
transfer processes. 

Zhu and Guo (2007) and Guo and Chen (2007) used the concepts of entransy and entransy dissipation to optimize 
heat transfer processes. The entransy dissipation is a measure of the loss of the ability to transfer heat in the same way 
the entropy generation is proportional to the loss of the ability to produce work. The principle of maximum entransy 
dissipation was developed using the method of weighted residues. These concepts were used in the analysis and 
optimization of a problem of temperature distribution in materials of high thermal conductivity. 

Chen et al. (2008) examined a problem of heat conduction which consists in determining the optimal distribution of 
a material of high thermal conductivity in a given volume such that the heat generated at each point is transferred more 
effectively to the boundaries of the volume. This analysis was done using the concept of entransy and the results were 
compared with those obtained by the constructal theory. 

Wu and Liang (2008) applied the concepts of flow of entransy and entransy dissipation in the heat transfer by 
radiation. Entransy is partially dissipated during processes of heat transfer by radiation due to irreversibilities. The 
extreme principle of entransy dissipation was used to optimize a problem of heat transfer by radiation between three 
bodies. 

Oliveira and Milanez (2009) used the concept of exergy and entransy to analyze an isothermal and other non-
isothermal solar collector operating in steady state. The authors defined the number of entransy dissipation for a solar 
collector and showed that this parameter is the number of entropy dissipation. It is hoped that these results together with 
those obtained by minimizing the entropy generation will be useful in the design of cheaper and efficient collectors. 
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The objective of this work is to present the concept of entransy in a systematic way and to analyze two simple heat 
transfer problems to show the physical implementation of this concept. It is hoped that this concept will be of great 
importance in the development of thermal sciences.  
 
2. ENTRANSY 
 
2.1. Analogy between heat conduction and eletrical conduction  
 

Experimental studies often use the analogy between electrical conduction and heat conduction to facilitate the 
analysis of steady state or transient heat conduction problems of complex systems. In order to exist electricity 
conduction there must be a difference of potential V and to exist heat conduction there must be a temperature difference 

.T  A potential difference V originates a flow of electricity "I  and through a temperature difference there is a heat flux 
".q  The resistance to the electricity flux is the electrical resistance eR  and the resistance to the heat flow is the thermal 

resistance .tR  These variables can be viewed and compared in Tab. 1: 

 
Table 1. Analogy between electrical and thermal parameters. 

 
Electrical Potential  Electrical Flux  Electrical Resistance 

V  (V) "I  (A/m2)  eR   AV /  

Thermal Potential  Heat Flux  Thermal Resistance 
T  (K) "q  (W/m2) 

tR   WK /  

 
Multiplying the electrical and heat flux by the respective areas the electricity transfer rate I  and the conduction heat 

transfer rate q  can be obtained. In the electrical conduction the electricity transfer rate is calculated through the Ohm’s 

law. As for the heat conduction, the heat transfer rate is calculated using the Fourier’s law. The electric charge stored in 
a capacitor is eQ  while as the heat stored in a body is .U  These variables can be viewed and compared in Tab. 2: 

 
Table 2. Analogy between electrical and thermal parameters. 

 
Electricity Transfer Rate  Ohm’s Law Electrical Charge Stored 

I  (A) 

dn

dV
AkI e  (A) eQ  (C) 

Heat Transfer Rate Fourier’s Law Heat Stored 
q  (W) 

dn

dT
kAq   (W) 

TmcU v  (J) 

 
where ek  is the electrical conductivity, k  is the thermal conductivity and n is the direction of the electric potential and 

of the heat potential. An additional analogy is the capacitance of a capacitor eC  and the thermal capacity of a body .C  

The electrical potential energy stored in a capacitor is eE  and there is no corresponding parameter in thermal systems, 

as shown in Tab. 3: 
 

Table 3. Analogy between electrical and thermal parameters. 
 

Capacitance Electrical potential energy stored in a capacitor 
VQC ee   (F) 

2

VQ
E e

e  (J) 

Thermal Capacity Thermal potential energy stored in a body 
TUC   (J/K) ? 

 
In the analogy shown in Tab. 3 it may be noticed the absence of a parameter "thermal potential energy of a body” 

for thermal systems. This parameter corresponds to the electrical potential energy stored in a capacitor. In analogy to 
electrical systems, the following parameter can be defined: 
 

2

UT
En   (1) 
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where TmcU v is the thermal energy stored in a body andT  represents the thermal potential. The physical meaning of 

that quantity was considered by Guo et al. (2007) in terms of an analysis of heat transfer to or from an object. In the 
same way an electrical capacitor stores electrical charge, resulting in electrical energy, a body can be seen as a thermal 
capacitor that stores heat (thermal load) resulting in "energy" of heat. The term energy was placed in quotes because its 
unit is the product of Joule and Kelvin, not only Joule. This concept was defined as the internal energy entransy because 
it has the nature of "potential energy" of a quantity of heat. The authors also interpreted that amount as a measure of the 
potential for heat transfer. 
 
2.2. Entransy 
 

The physical meaning of entransy can be understood by considering a reversible heating process of a body with 
temperature T  and specific heat ,vc  according to Fig. 1: 

vcT ,

U

Q

 
Figure 1. Thermal capacitor  

 
In a reversible process of heating, the temperature difference between the body and the heat source, as well as the 

heat added, are infinitesimal. The continuous heating of the body implies an infinite number of heat sources that heat 
the body individually and in sequence. The temperature of these heat sources increases by an infinitesimal increment 
and each infinitesimal heat source provides an infinitesimal amount of heat to the body. The temperature represents the 
potential for heat transfer and this potential for heat transfer will change at different temperatures. Thus, the “potential 
energy” increases together with thermal energy (thermal charge) when heat is added. When an infinitesimal amount of 
heat is added to the system, the increase in the “potential energy” of the thermal energy can be written as the product of 
the thermal charge and the thermal potential (temperature) differential: 

 
UdTdEn   (2) 

 
If absolute zero is taken as the zero thermal potential, then the “potential energy” of the thermal energy of a body at 

a temperature T  is: 
 


T

n UdTE
0

 (3) 

 
The unit of the “potential of energy” of the thermal energy is the product between Joule and Kelvin (JK) and not 

Joule (J). Considering constant specific heat: 
 

 
T

v
vn

Tmc
TdTmcE

0

2

2
 (4) 

 
Thus, as an electrical capacitor stores electrical charge having energy stored as a result, a body can be seen as a thermal 
capacitor that stores thermal load having heat stored as a result. If the body is placed in contact with an infinite number 
of heat sinks with infinitesimal temperature lower than the body, the “potential energy” of the total energy that can be 
transferred from the body is .2UT  

 
3. CASE STUDY 
 
3.1. Physical situation 1 
 

Consider a thermal system composed of 3 bodies, identified as 1, 2 and 3, according to Fig. 2a. The thermal 
capacitances of bodies 1, 2 and 3 are identified as ,1C 2C  and ,3C  respectively, where ., 321 CCC   The thermal 
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conductivities of bodies 1, 2 and 3 are identified as 21, kk  and ,3k  respectively, where ., 321 kkk   The initial 

temperatures of bodies 1 and 2 are, respectively, 10T  and .20T  It is assumed that .2010 TT   The quantity of energy stored 

in bodies 1 and 2 in the beginning can be calculated as: 
 

10110 TCQ   (5) 

 

20220 TCQ   (6) 

Body 1 Body 3 Body 2 Body 1 Body 2Body 3

1k 1k
2k 2k

3k10110 TCQ  20220 TCQ  111 TCQ  222 TCQ 

10T 20T 1T 2T

321, CCC  321 , kkk 

3L

3A

3k

3L

3A

3R 3R

a) b)

 
Figure 2a. Thermal system before contact     Figure 2b. Thermal system after contact 

 
The 3 bodies are put in thermal contact and heat is transferred from body 1 to body 2 through body 3, according to 

Fig. 2b. The thermal conduction resistance in body 3 is: 
 

33

3
3 Ak

L
R   (7) 

 
The situation described above consists in a transient heat transfer problem, where the temperature of body 1 

decreases and the temperature of body 2 increases, being both functions of time. Besides, the energy stored in body 1 
decreases and the energy stored in body 2 increases, also as function of time. The reason to use the thermal resistance in 
body 3 is due to its low thermal capacitance. A situation of steady state regime is rapidly established in body 3 and the 
concept of thermal resistance can be utilized when modeling body 3. The energy stored in bodies 1 and 2 at any instant 
can be calculated as: 
 

111 TCQ   (8) 

 

222 TCQ   (9) 

 
The objective of this problem is to formulate a mathematical model to calculate the temperature and the energy 

stored in bodies 1 and 2 as function of time. This model is based in an energy and entransy balance for body 3. By 
doing this, the entransy dissipation rate for body 3, as well as the entransy variation rate for bodies 1 and 2 can be 
obtained. Neglecting kinetic and potential energy variations, and the work term, the energy balance in the rate form for 
body 3 gives: 

 

dt

Q

dt

dU 33 
  (10) 

 
Utilizing the approximation 333 dTCdU   the net heat transfer rate can be rewritten as: 

 

dt

Q

dt

Q

dt

dT
C 213

3


  (11) 

 

As it was assumed that the heat capacity of body 3 can be neglected, the term 
dt

dT
C 3

3  can also be neglected and Eq. 

(11) is expressed as: 
 

dt

Q

dt

Q 21 
  (12) 
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Equation (12) indicates that the heat transfer rate from body 1 to body 3 must be equal to the heat transfer rate from 
body 3 to body 2. This heat transfer rate crosses body 3 by conduction. Denoting the conduction heat transfer rate in 
body 3 by q =  ,dtQ  an energy balance at the boundary surface between bodies 1 and 3 and in the surface between 

bodies 3 and 2 gives: 
 

q
dt

Q

dt

Q

dt

Q


 21  (13) 

 
An entransy balance in the rate form for body 3 gives: 

 

3

22
2

1
1

3 Rq
dt

dT
Q

dt

dT
Q

dt

dEn   (14) 

 
As the heat capacity of body 3 is very low, its storage capacity is also very low. Thus, the steady state regime is 

rapidly reached in body 3 when the 3 bodies are in thermal contact. Therefore, the term dtdEn3  can be ignored and Eq. 

(14) rewritten as: 
 

03

22
2

1
1  Rq

dt

dT
Q

dt

dT
Q  (15) 

 
The solution of differential Eqs. (13) and (15) gives the variation in time of the amount of energy stored in bodies 1 

and 2 as well as the variation in time of the temperature in bodies 1 and 2. The initial conditions to obtain the solution of 
these two differential equations are: 
 

 
 
 
  202

101

202

101

0

0

0

0

TtT

TtT

QtQ

QtQ






 (16) 

 
Integrating Eq. (13) the result is ,21 cQQ   where c is a constant of integration. Applying the initial condition for 

1Q  and 2Q , .2010 QQc   Considering constant heat capacity for bodies 1 and 2, from Eqs. (8) and (9): 

 

dt

Q

Cdt

dT 1

1

1 1 
  (17) 

 

dt

Q

Cdt

Q

Cdt

dT 1

2

2

2

2 11 
  (18) 

 
Substituting Eqs. (13), (17) and (18) into Eq. (15), with cQQ  12  and rearranging: 

 

2

2010
1

21

21

3

1 1

C

QQ
Q

CC

CC

Rdt

Q 








 



 (19) 

 
Equation (19) is a first order differential equation that can be solved by the integration factor technique, resulting in 

an expression for .1Q  After that it is possible to obtain CQQ  12  and expressions for 1T  and 2T  from Eqs. (8) and (9) 

respectively. After some algebraic manipulations and application of the initial conditions indicated by Eqs. (16): 
 

  CR

t

eTTCAQ 3

201011



  (20) 

  CR

t

eTTCAQ 3

201022



  (21) 

 

  CR

t

eTT
C

C

C

A
T 3

2010

11

1
1



  (22) 
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  CR

t

eTT
C

C

C

A
T 3

2010

22

2
2



  (23) 

 
where: 
 

   
21

20102
2

21

20101
1

21

21      e          ,
CC

QQC
A

CC

QQC
A

CC

CC
C











   

 
The entransy rate supplied by body 1 and the entransy rate received by body 2 are calculated as follows: 

 

  















 



CR

t

CR

t

n eTT
C

C
e

C

A

R

TT

dt

dT
QE 33

2

2010

11

1

3

20101
11

  (24) 

 

  















 



CR

t

CR

t

n eTT
C

C
e

C

A

R

TT

dt

dT
QE 33

2

2010

22

2

3

20102
22

  (25) 

 
The entransy rate in body 3 is calculated as: 

 

  CR

t

nd e
R

TT
RqE 3

2

3

2

2010
3

2


  (26) 

 
where q  is the heat transfer rate across body 3, calculated as: 

 

CR

t

e
R

TT

dt

Q
q 3

3

20102









 



 (27) 

 
As a certain quantity of the entransy is dissipated in body 3, an entransy transfer efficiency can be defined as the 

ratio between the entransy rate received by body 2 and the entransy rate supplied by body 1: 
 

 
  1

3

1

3

2

1

1

2

11

22 1
T

qR

qT

RqqT

qT

qT

TdtQ

TdtQ






  (28) 

 
In order to visualize the behavior of the solutions obtained, numerical values were adopted for the thermal system of 

Fig. 2. These data are: 1021  CC J/k, 10010 T oC, 020 T oC, 01.03 L m, 001.03 k W/mK and 13 A m2. In Fig. 3 

the behavior of the energy stored in bodies 1 and 2 can be seen as a function of time. As expected, the energy of body 1 
decreases exponentially and the energy of body 2 increases exponentially in function of time, according to Eqs. (20) and 
(21). Fig. 4 shows the temperature behavior of bodies 1 and 2 as a function of time. Also, as expected, the temperature 
of body 1 decreases exponentially and the temperature of body 2 increases exponentially in function of time, according 
to Eqs. (22) and (23). 

Fig. 5 shows the heat transfer rate through body 3 as a function of time. According to Eq. (27) q  exhibits an 

exponential drop with time. This heat transfer rate drop can be ser justified by the reduction of the temperature 
difference between bodies 1 and 2 as function of time. As the heat transfer rate is proportional to the temperature 
difference, a decrease in the temperature difference between bodies 1 and 2 in time leads to a decrease of the heat 
transfer rate through body 3 in function of time. 

Fig. 6 shows the entransy rate released by body 1, the entransy rate received by body 2 and the entransy rate 
dissipated in body 3. At the initial instant it may be seen that body 1 delivers entransy while body 2 does not receive 
entransy. As the time increases, the entransy of body 1 decreases and the entransy of body 2 increases. However, these 
values are not equal because there is entransy dissipation in body 3. The entransy dissipation rate is proportional to the 
square of the heat transfer rate in body 3. As the heat transfer rate decreases in time according to Fig. 4, the bodies 1 and 
2 also decreases with time. Thus, the entransy rate delivered by body 1 approximates the entransy rate received by body 
2, according to Fig. 6. In particular, after 5 s, the entransy dissipation rate approaches zero and the delivered and 
received entransy rates are practically the same.  
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Figure 3. Energy stored in bodies 1 and 2 as a function of 

time. 
Figure 4. Temperature of bodies 1 and 2 as a function of 

time. 
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Figure 5. Heat transfer rate through body 3. Figure 6. Entransy rate delivered by body 1, received by 

body 2 and dissipated in body 3. 
 
Finally, in Fig. 7 it is possible to see the entransy transfer efficiency between bodies 1 and 2. It may be noticed that 

in the beginning this efficiency is very low due to the high entransy dissipation rate. However, as the entransy 
dissipation rate decreases together with the heat transfer rate through body 3, the entransy transfer efficiency from body 
1 to body 2 increases, as can be seen in Fig. 7: 
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Figure 7. Entransy transfer efficiency from body 1 to body 2. 
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3.2. Physical situation 2 
 

In Fig. 8 the collector has a surface area CA  receiving solar radiation at a rate .*Q  The solar radiation rate *Q  is 

proportional to the collector surface area ,CA  and this proportionality is represented by  CAQq **   that varies with the 

geographic position of the Earth, with the orientation of the solar collector, with the local meteorological conditions and 
with the time of the day. In the present analysis, it is assumed that *q  is constant and the solar collector operate in 

steady state regime. Furthermore, variations of kinetic and potential energy are neglected. 
 

CAqQ ** 

0Q

*T

0T

CA

Cu TQ ,

 
Figure 8. Schematic of an isothermal collector. 

 

The incident solar radiation (irradiation) *Q  is partially utilized as useful energy uQ  and the remaining quantity 0Q  

represents the energy loss from the solar collector to the ambient. These quantities are related by the first law of 
thermodynamics, which is written for steady state as: 
 

uQQQ   0

*  (29) 

 
 The rate of heat loss to the ambient can be expressed by Newton's law of cooling replacing the convection heat 
transfer coefficient by an overall heat loss coefficient for the collector ,CU  that is: 

 

 00 TTAUQ CCC   (30) 

 
where 0T  is the ambient temperature and CU  is assumed as a collector characteristic constant. Combining Eqs. (29) and 

(30) it may be noticed that the maximum collector temperature occurs when ,0uQ  that is, when all solar radiation rate  
*Q  is lost to the ambient. Thus, by assuming 0uQ  in Eq. (29) and substituting the result in Eq. (30) it follows: 

 

 0max,

* TTAUQ CCC   (31) 

 
where  CT  is equal to .max,CT  Hence, from Eq. (31) an expression can be written for the maximum collector temperature: 

 

CC

C AU

Q
TT

*

0max,


  (32) 

 
 Dividing Eq. (32) by the ambient temperature 0T  and defining 0max,max TTC  an expression can be written for the 

dimensionless maximum collector temperature: 
 

0

*

max 1
TAU

Q

CC


  (33) 
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where max,CT  is also called stagnation collector temperature. Applying the second law of thermodynamics for steady 

state regime, the entropy generation rate in the solar collector can be written as: 
 

*

**

0

0

0

*

*

0

0 2
T

Q
AU

T

Q

T

TAU

T

TAU

T

Q

T

Q

T

Q
S CC

C

CCCCC

C

u
gen


   (34) 

 
 Eq. (34) can be rearranged in the form: 
 

 
2

1
*

maxmax 









C

CSN  (35) 

 

where CCgenS AUSN   is the entropy generation number and .0

** TT  The solar collector optimal temperature can 

be obtained by minimizing entropy generation rate, Eq. (35), that is, ,0Cgen dTSd   and the result is: 
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where CT  is equal to .,optCT  Defining 0,, TT optCoptC   an expression can be obtained for the solar collector dimensionless 

optimal temperature: 
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 Substituting Eq. (33) into Eq. (37) results: 
 

  21

max,  optC  (38) 

 
 Finally, the minimum entropy generation rate consists in the substitution of the result obtained from Eq. (38) into 
Eq. (35), that is: 
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 The entransy dissipation rate can be obtained from the equation gendissip STE 2

0  suggested by Guo and Chen (2007) 

and from Eq. (34): 
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 The left hand side of Eq. (40), ,2

0TAUE CCdissip
  is a dimensionless parameter that can be defined as an “entransy 

dissipation number” for an isothermal collector, that is: 
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 Eq. (41) can be rearranged in the form: 
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 It is interesting to note that the expression for the entropy generation number, Eq. (35) is similar to the expression 
for the entransy dissipation number, Eq. (42). In this way, the minimum entransy dissipation can be obtained 
substituting min,SN  for min,EN  in Eq. (42): 

 

    
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max21

maxmin,
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12


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EN  (43) 

   
In Fig. 9 the entransy dissipation number, Eq. (42), can be visualized in function of the collector temperature 

 .10max   It may be noticed that the entransy dissipation number reaches a minimum value min,EN  close to temperature 

.3C  From Eq. (38) this temperature is the optimum temperature 16.3, optC  and the corresponding minimum 

entransy dissipation number according to Eq. (43) is .29.4min, EN  
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Figure 9. Entransy dissipation number for an isothermal collector. 

 
4. CONCLUSIONS 
 

According to the physical situations presented here the following statements can be made: 
 Entransy is not conserved, and heat transfer rate is always accompanied by entransy transfer rate. 
 Entransy can be stored in a body. A heat transfer rate to a body increases the entransy stored in this body. 

Similarly, a heat transfer rate from a body decreases the entransy stored in this body. 
 The entransy describes the ability of a body to transfer heat just as the electrical energy describes the ability of 

a capacitor to transfer electrical charge. 
 Ideally a reversible heat transfer process (infinitesimal temperature difference) has zero entransy dissipation. 

For this special idealized case the entransy is conserved. For real heat transfer processes, the temperature 
difference is finite and the entransy is not conserved. For this case an entransy dissipation takes place. 
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