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Abstract.
A comparison of five different spatial discretizations schemes is performed considering a typical high speed flow applica-
tion. A fully explicit, 2nd order accurate, 5-stage, Runge-Kutta time stepping scheme is used to perform the time march
of the flow equations. The algorithms studied include 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes.
A technique that allows an excellent convergence acceleration of a numerical method is the multigrid procedure.The
schemes here discussed are applied to the solution of hypersonic inlet flows. The inlet entrance conditions are varied
from a freestream Mach number M∞ = 4 up to M∞ = 12, in order to test the schemes implemented for a wide range of
possible inlet operating conditions. The results included in the present paper only considered inviscid computations,and
the fluid was treated as a perfect gas, hence, no chemistry is taken into account.
Keywords: CFD, Upwind, Unstructured

1. INTRODUCTION

Upwind schemes take into account physical properties of the flow in the discretization process and they have the
advantage of being naturally dissipative. Flux vector splitting methods introduce the information of the sign of the
eigenvalues in the discretization process, and the flux terms are split and discretized according to the sign of the associated
propagation speeds. Steger and Warming(1981) make use of the homogeneous property of the Euler equations and split
the flux vectors into forward and backward contributions by splitting the eigenvalues of the Jacobian matrix into non-
negative and non-positive groups. The split flux contributions are, then, spatially differenced according to one-sided
upwind discretizations. However, these forward and backward fluxes are not differentiable when an eigenvalue changes
sign, and this can produce oscillations at sonic points. In order to avoid these oscillations, van Leer(1982) defines a
continuously spatially differenced flux vector splitting scheme that leads to smoother solutions at sonic points.

In the present work, the interface fluxes are calculated by five different algorithms, including a central difference-type
scheme, van Leer (van Leer, 1982) and Liou (Liou, 1996) flux vector splitting schemes. In the central difference case,
the interface fluxes are obtained from an average vector of conserved variables at the interface, which is calculated by
straightforward arithmetic averages of the vector of conserved variables on both sides of the interface. For the first-order
van Leer scheme, the interface fluxes are obtained by van Leer’s formulas and they are constructed using the conserved
properties for the i-th control volume and its neighbor across the given interface. The second order scheme considers a
MUSCL approach Anderson et al. (1986), that is, the interface fluxes are formed using left and right states at the interface,
which are linearly reconstructed by primitive variable extrapolation on each side of the interface. The extrapolation
process is effected by a limiter in order to avoid the creation of new local extrema. The first- and second-order Liou
schemes consider that the convective operator can be written as a sum of the convective and pressure terms(Liou, 1996).
The second-order scheme also considers a MUSCL approach. Time march uses a fully explicit, 2nd-order accurate, five-
stage Runge-Kutta time stepping scheme. Computations using a fine unstructured mesh are compared with other two
large meshes in order to assess the quality of the solutions calculated by the different schemes implemented and in order
to analyze the mesh influence in the capture of the flow features of interest.

A 3-D inlet configuration which is representative of some proposed inlet geometries for a typical transatmospheric
vehicle is considered. The inlet entrance conditions are varied from a freestream Mach number M∞ = 4 up to M∞ = 12
in order to test the schemes implemented for a wide range of possible inlet operating conditions. The fluid was treated
as a perfect gas and, hence, no chemistry was taken into account. From a physical standpoint, the present simulations
are typical of cold gas flows which are usually achieved in experimental facilities such as gun tunnels. This is certainly
not representative of actual flight conditions in which dissociation and vibrational relaxation are important phenomena,
especially for the higher Mach number cases. However, it is a necessary step in order to construct a robust code to deal
with the complete environment encountered in actual flight.
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2. Theoretical Formulation

The flows of interest in the present context are modeled by the compressible Reynolds-averaged Navier-Stokes
(RANS) equations. These equations can be written, considering the perfect gas assumption, as
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where Q is the dimensionless vector of conserved variables, ρ is the fluid density, u, v and w are the Cartesian velocity
components, e is the fluid total energy per unit volume, p is the pressure, Re is the Reynolds number, M∞ is the free stream
Mach number and τkx, τky, τkz is the stress tensor. In this work, all the variables arenon-dimensionalized according to
(Pulliam, 1980). The Ee, Fe and Ge terms are the dimensionless inviscid flux vectors and Ev , Fv and Gv are the
dimensionless viscous flux vectors, which can be written as
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where A = E, F or G, k = x, y or z, and C = u, v or w, respectively, and δij is the Kronecker delta.

3. Numerical Formulation

The forthcoming subsections briefly describe the finite-volume and temporal discretization of the governing equations.

3.1 Finite-Volume Discretization

The finite volume method (FVM) is used to obtain the solution of the RANS equations. The formulation of the method
is obtained by an integration of the flow equations in a finite volume. The application of Gauss theorem for each finite
volume yields

∫
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d~S is the outward oriented normal area vector for the i-th control volume and~ix,~iy and~iz are the Cartesian unit vectors,
and Qi is the discrete value of the vector of conserved variables for the i-th control volume Vi.

3.2 Time Integration

Time integration is performed using a Runge-Kutta type scheme similar to the one proposed in Jameson et al. (1981).
In the present work, a 2nd-order accurate, 5-stage Runge-Kutta scheme is used, which can be written as
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In the previous equations, COi, V Ii and DIi are, respectively, the convective operator, the viscous operator and the
artificial dissipation operator calculated for the i-th control volume. These operators are calculated according to the
spatial discretization scheme. The α` coefficients are 1/4, 1/6, 3/8, 1/2 and 1 for ` = 1, · · · , 5, respectively. The
artificial dissipation operator is calculated only on the first, third and fifth stages. For the inviscid calculations, the
artificial dissipation operator is calculated in the first and in the second stages.

4. Spatial Discretization

Both centered and upwind schemes are available in the present numerical method for computation of convective fluxes.
Viscous fluxes are always computed by a second-order accurate centered scheme in the present paper.

4.1 Centered Scheme

The centered scheme used in this work for spatial discretization was proposed by Jameson et al. (1981). For this
scheme, the convective operator is calculated as the sum of the inviscid fluxes on the faces of the i-th volume,which are
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computed as a function of the averaged vector of conserved properties at the face, i.e.,

COi =

nf
∑

k=1

~Pe (Qk) · ~Sk , Qk =
1

2
(Qi + Qm) . (5)

In this expression, Qi and Qm are the conserved properties in the volumes at each side of the k-th face and m indicates
the neighbor of the i-th element. The viscous operator in the i-th control volume is calculated as the sum of the viscous
fluxes along the faces which constitute the volume.

4.2 First-Order Van Leer Scheme

The convective operator, C (Qi), is defined for the van Leer flux vector splitting scheme (van Leer, 1982) by the
expression
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In the present case, the interface fluxes, Ek, Fk and Gk, are defined as (Azevedo and Figueira da Silva, 1997)
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Here, E±
e (Qi) is the split fluxe calculated using van Leer’s formulas (van Leer, 1982) and the conserved properties of

the i-th control volume. The Fk and Gk are computed as Ek split fluxe.
The evaluation of the split fluxes in the van Leer context can be summarized as follows:
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In the previous equations, a is the speed of sound, the Mach number in the x-direction is definedas Mx = u/a and
the split mass fluxes are f± = ±ρa [(Mx ± 1) /2]

2. Similar expressions are obtained for F± using My = v/a, and for
G± using Mz = w/a. With this flux vector definition, the splitting is continuosly differentiable at sonic and stagnation
points.

4.3 MUSCL Reconstruction

To achive 2nd order accuracy in space for the van Leer and Liou schemes, linear distributions of properties are as-
sumed at each cell to compute te left and right states in the face. Such states are represented by the L and R subscripts,
respectively, in the van Leer and Liou definitions. The linear reconstruction of properties is achieved through a MUSCL
(Monotone Upstream-Centered Scheme for Conservation Laws) (van Leer, 1979) scheme, in which the property at the
interface is obtained through a limited extrapolation using the cell properties and their gradients.

In order to perform such reconstruction at any point inside the control cell, the following expression is used for a
generic element, q, of the primitive variable vector, W ,

q(x, y, z) = qi +∇qi · ~r , (9)

where (x, y, z) is a generic point in the i−th cell; qi is the discrete value of the generic property q in the i−th cell, which
is attributed to the cell centroid, and ~r is the distance vector from the i−th cell centroid to a generic point (x, y, z) and
∇qi is the gradient of the qi.
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4.4 Second-Order Van Leer Scheme

In the present work, the implementation of the 2nd-order van Leer scheme is based on an extension of the Godunov
approach. The projection stage of the Godunov scheme, in which the solution is projected in each cell on piecewise
constant states, is modified. This constitutes the so-called MUSCL approach (van Leer, 1979) for the extrapolation of
primitive variables. By this approach, left and right states at a given interface are linearly reconstructed by primitive
variable extrapolation on each side of the interface, together with some appropriate limiting process (Hirsh, 1990) in order
to avoid the generation of new extrema, as defined in the previous subsection. The vector of primitive variables is taken
as W = [p, u, v, w, ei]

T , in the present case. The convective operator, C (Qi), is still defined as in Eq. (6), except that the
interface fluxe, Ekis now defined as

Ek =

{

E+
e (QL) + E−

e (QR) for ~Sk ·~ix ≥ 0

E−
e (QL) + E+

e (QR) for ~Sk ·~ix < 0
(10)

Here, QL = Q(WL) and QR = Q(WR) are the left and right states at the k-th interface obtained by the linear extrapola-
tion process previously discussed. The Fk and Gk are computed as Ek split fluxe.

4.5 First- and Second-Order Liou Schemes

The Liou schemes implemented in this work consider that the flux vectors can be expressed as a sum of the convective
and pressure terms(Liou, 1994) and (Liou, 1996). For the construction of the Liou schemes, one can assume that the
convective operator may be written as
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where F
(c)
k represents the contribution of the convective terms and Pk represents the pressure terms. Moreover, (nx, ny, nz)

are the components of the unit vector normal to the face and oriented outward with regard to the i-th control volume. In
order to write the expressions of F

(c)
k and Pk, one must initially observe that, for the AUSM+ scheme, the inviscid flux

vectors can be written as
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In the previous expressions, p is the pressure, H is the total specific enthalpy, Mx = u/a, My = v/a and Mz = w/a.
Hence, one could write that

F
(c)
k = [(unx + vny + wnz) Φ]

k
, Pk = (nxPx + nyPy + nzPz)k

. (14)

The approach followed in the present work in order to extend Liou’s ideas(Liou, 1994) to the unstructured grid case
consists in defining a local one-dimensional stencil normal to the face considered. For the construction of the first-order
scheme, one must identify the “left” (or L) state, as defined in (Liou, 1994) and (Liou, 1996), as the properties of the
i-th volume and the “right” (or R) state as those of the m-th volume. The second-order scheme follows exactly the same
formulation, except that the left and right states are obtained by a MUSCL extrapolation of primitive variables as described
previously in the paper. The minmod limiter was again used in this case. The definition of the interface properties follows
the standard formulation of the AUSM+ scheme(Liou, 1996). Hence, the interface Mach number, Mk, also according to
the definition, can be written as

Mk = M+
L + M−

R , (15)

where M+
L = M+(ML) and M−

R = M−(MR). The split Mach numbers are defined as
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2 (ML + |ML|) , if |ML| ≥ 1,
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(16)

The M±
β terms can be written as
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This work used β = 1/8, as suggested in Liou (1994). Moreover, in order to achieve a unique splitting in Liou’s sense,
the left and right Mach numbers are defined as

ML =
ṼL

ak

and MR =
ṼR

ak

, (18)

where

ṼL = uLnx + vLny + wLnz ,

ṼR = uRnx + vRny + wRnz . (19)

The corresponding speed of sound, ak, at the interface is given by
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and a similar definition for ãR. The pressure, pk, at the k-th interface is given by

pk = p+
L pL + p−R pR . (21)

The split pressures, still following the expressions in Liou (1994), can be written as

p+
L =

{

1
2 (1 + sign(ML)) , if |ML| ≥ 1,
p+

α (ML) , otherwise,
, p−R =

{

1
2 (1 − sign(MR)) , if |MR| ≥ 1,
p−α (MR) , otherwise.

(22)

The p±α terms can be written as
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This work used α = 3/16, as suggested in Liou (1994). Therefore, with the interface properties so defined and using Eq.
(14), the F
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k and Pk vectors can be finally written as
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Hence, the convective operator, C(Qi), can be computed using Eq. (11).

5. Results and Discussion

A 3-D inlet configuration which is representative of some proposed inlet geometries for a typical transatmospheric
vehicle was used as a test in the present work, as we can observe in Fig.1(a).

For the present simulations, the fluid was treated as a perfect gas with constant specific heat and no chemistry was taken
into account. The purpose of these simulations is to compare the different schemes applied to high Mach number flows in
order to verify if they are able to represent all flow features, such as strong shocks, shock reflections and interactions, and
expansion regions. Moreover, there is interest in verifying whether the schemes can avoid oscillations in the presence of
such strong discontinuities.

A computional mesh comparative study is very important and is part of the presente work. The influence of the results
is observed for three grids made up of prism elements. In Fig. 1(b), one can observe the 2-D view of the meshes used in
this study. The pressure coefficient for the 2nd-order upwind van Leer scheme is compared with the available analytical
solutions, which are valid upstream of the shock interactions, using diferent grids to observe the influence of the mesh in
the pressure coefficient distribution in the upper and lower surface of the configuration. The first grid is made up of 5716
prism volumes, the second grid has 24045 volumes and the third grid has 60937 volumes. One can observe that only the
second and the third grids given an acceptable pressure coefficient distribution results. For this instance, all the results
performed in this paper are computed using the more fine grid with 60937 volumes.

The pressure coefficient distribution results with the 2nd-order centered scheme, the 1st- and 2nd-order van Leer
schemes, and the 1st- and 2nd-order Liou schemes are shown in Figs. 3(a) and 3(b). One can observe that the upper wall
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(a) 3-D inlet configuration. (b) 2-D view of the grids.

Figure 1. 3-D Unstructured grids made up of prism elements.

schock and the lower wall schock are less oscillatory in the computations with the 1st-order van Leer upwind scheme.
This is to be expected since this scheme is quite a bit more diffusive than the other schemes tested in the paper.

The shock positions have been fairly well captured for all test cases presented in this paper. It is also correct to state
that the results for the upper wall shocks seem to be slightly better resolved than those for the lower wall. In general,
good qualitative results are obtained with the present numerical tool. The more diffusive character of 1st-order schemes
is evident in the quantitative results presented. Pressure coefficient distributions calculated indicate that the additional
numerical diffusivity of 1st-order schemes can destroy some of the information in the downstream regions. Moreover, it
is also clear that the upper wall entrance shock is more sharply defined by the 2nd-order upwind solutions than by the
2nd-order centered scheme and the 1st-order upwind calculations.

In Figs. 4(a) and 4(b), one can observe the pressure and Mach number contours respectively for M∞ = 4 using the
2nd-order van Leer upwind scheme. In the contours we can observe the shock-shock interactions in the downstream
portion of the flow and that the overall flow features are well captured by the scheme. Similar results were found with
simulations considering inlet entrance Mach numbers M∞ = 8 and M∞ = 12 and the results are not included in this
paper.

6. Concluding Remarks

The present work intends the perform a comparison of five different spatial discretizations schemes for cold gas
hypersonic flow simulations. The schemes here presented are applied to the solution of supersonic and hypersonic inlet
flows. The results included in the present paper only considered inviscid computations,and the fluid was treated as a
perfect gas. In actual flight, an inlet flow with a high entrance Mach number could not be simulated with the perfect
gas assumption. In other words, real gas behavior would have to be taken into account. From a physical standpoint,
however, the present calculations could be considered as the simulation of the cold gas flows which are usually achieved
in experimental facilities such as gun tunnels. simulations could be seen as a necessary step in the construction of a robust
code to deal with the complete environment encountered in actual flight. Here, however, the consideration of very high
Mach number flows has simply the objective of testing the behavior of the different schemes in the presence of strong
shocks.

The equations are advanced in time by an explicit, 5-stage, 2nd-order accurate, Runge-Kutta time stepping procedure.
The spatial discretization considers a centered scheme and two upwind schemes, namely van Leer and Liou flux-vector
splitting schemes, with both 1st- and 2nd-order implementations. The implementation of the 2nd-order versions of the
two upwind schemes uses MUSCL reconstruction in order to obtain left and right states at interfaces. The 1st-order van
Leer flux vector splitting scheme has reduced the flow property oscillations. However, as one could expect, this 1st-order
method also causes considerable smearing of the flow discontinuities due to the excessive artificial dissipation intrinsically
added.
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(a) Upper wall. (b) Lower wall.

Figure 2. Study of grid influence in the pressure coefficient distributions in the lower and upper walls forM∞ = 4.
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(a) Upper wall. (b) Lower wall.

Figure 3. Pressure coefficient distributions in the lower and upper walls forM∞ = 4.

(a) Pressure. (b) Mach number.

Figure 4. Pressure and Mach number contours obtained for the 2nd-order van Leer scheme (M∞ = 4).


