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AbstractAn analytical solution has been derived for the axial flow of Phan-Thien—Tanner (PTT) fluids in concentric annuli with
inner cylinder rotation. The simplified form of the PTT model is used with the linear stress coefficient of Phan-Thien (1978), but the
nonlinearity of the model couples the axial and tangential flows in a complex way. Expressions are derived for the radial variation
of both velocities, as well as for the three shear stresses and the two normal stresses. For engineering purposes expressions are
given relating the friction factor and the torque coefficient to the Reynolds number, the Taylor number, a non-dimensional number
quantifying elastic effectszoez) and the radius ratio. For axial dominated flows fRe aigl are found to depend only ebe?

and the radius ratio, but as the strength of rotation increases both coefficients become dependent on the ratio between bulk axial
and the inner cylinder tangential velocitie&)vhich efficiently compacts the effects of the Reynolds and Taylor numbers
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1. Introduction

Annular flows of non-Newtonian fluids are found in a wide variety of applications: from drilling oil and gas wells
and well completion operations to industrial processes involving waste fluids, synthetic fibres, foodstuffs and the
extrusion of molten plastics as well as in some flows of polymer solutions. This has motivated a wealth of research on
annular fllows which has been presented by Escudier et al32@f2concern here are mainly previous investigations
with viscoelastic fluids in concentric annuli under laminar flow conditions.

The vast majority of non-Newtonian investigations in annular flows concern purely viscous fluids obeying the
power law model, and yield stress fluids obeying both the Bingham plastic or the Herschel-Bulkley models. For
viscoelastic fluids, investigations on laminar flows are scarcer; one of the first to study viscoelastic concentric annular
flows without rotation was Bhatnagar (1963), who used a Rivlin-Eriksen model, but in the presence of suction and
injection at the cylinder walls. Dierckes and Schowalter (1966) measured the laminar annular flow of polyisobutelene
solutions in the presence of rotating inner walls and showed that symmetry of the flow could be predicted from an
inelastic theory based on a power law fitted to the experimental rheological data. Kaloni (1965) and Kulshrestha (1962)
derived analytical solutions for viscoelastic fluid obeying Oldroyd's equations while Pinho and Oliveira (2000) solved
analytically the concentric annular laminar flow without inner cylinder rotation for the simplified PTT model. That
work is the immediate predecessor of the present investigation since the adopted rheological constitutive equation is the
same, but now the objective is the investigation of the annular flow of the PTT fluid with inner cylinder rotation.

Other analytical studies of swirling viscoelastic flows have been motivated by applications in rheology and
tribology, as listed in Cruz and Pinho (2004).

The paper isorganised as follows: in the next section the relevant equations are presented, the various non-
dimensional numbers are defined and the analytical solution is derived. Plots of relevant quantities are made and
discussed in Section 3 and a summary of the main conclusions closes the paper.

2. Governing equations and analytical solution

The flow geometry is a concentric annulus of inner and outer ragjiusnd Ry, respectively, defining an annular
gap, 8 = R — Ry, andradius ratiok =R|/Ro. Theflow is fully-developed, and so both the axial velocityand the

tangential velocityy, are only functions of the radial coordinatehe axial pressure gradient is constant and the inner
cylinder is rotating at constant angular velocity, Under these conditions the momentum equations in the axial,
tangential,@, and radialr, directions are
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The extra stresses are given by the simplified form of the PTT constitutive equation (Phan-Thien and Tanner, 1977)

f (tr (x)) T+ }\E = D with f(tr(t)) :1+%tr(r) )

whereD is the deformation rate tensady, is the relaxation timen is the viscosity coefficient and is a parameter of

the model limiting the extensional viscosity of the fluid. The stress coefficient funC(im(rr)), definedin Eq. (2), is
0

the linearization of the more general exponential coefficient andenotesOldroyd's upper convective derivative
0
1= % -t.u-(d u)T.r. For this flow geometry the constitutive equation simplifies to
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where the stress coefficierft(r i ) wasused for compactness. The stress coefficient is now given by the following non-

linear cubic equation

f(rii):“;:_ff%ﬁaﬁiﬁgﬁzé (5)

The boundary conditions for this problem  express no-slip at the walls:Rj 0 u=0,v=wR; and
r= Ro 0 u=0,v=0. Introducing the torque per unit length of the cylindel),(integration of Eq. (1-c) gives the

variation of one stress component;g :M/(Zrtr 2). Substitutingthis result into Eq. (4-a) provides the following

expression
dvg__ M _ ..
dr %ﬁ_ 2mnr? flei) ©

that can be used to calculatgg in Eq. (3-c), giving the resuitgg =AM 2/(2Tr2r]r4).
Now, using this stress into the radial momentum equation (Eq. 1-b) gives

ap 2 AM 2
r—= 5 1 7

which provides the radial distribution of pressure once the radial variation of the tangential velocity is known.
To obtain the axial velocity it is still necessary to deduce expressions joand 1,5, that depend only on

derivatives of velocity and pressure. Eq. (1-a) can be integrated into

_opr 2
Trz—a22 p (8)

wherecsy is an integration constant. Witty, alsogiven by Eq. (4-b), the stress coefficient function is determined as

du
foj)==—d— )
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Squaring this function and using it in Eq. (3-b) leads to

opr . of
I@B 2+ r @ (10)

0,22
ZZr]

Now, it is possible to determine the axial and tangential velocity profiles. According to Eq. (9), the definition of
f(r i ) and after substitution afgg andusing Eqg. (10), the following axial velocity gradient is deduced

du_1Cdpr  cpl 2)\8D)pr ERVE Lo CZE:FQ (11)
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A solution in terms of non-dimensional quantities is sought. For simplicity and prior to integration, the following
characteristic parameters are defined: an axial velocity stajec—p,zéz /(8r]), a tangential velocity scale
Ut =M/(m3), andthe corresponding characteristic Deborah numties = AU /3 andDer =AUt /3. Alternative
Deborah numbers are defined on the basis of the axial bulk velbtityafling to De=AU/d) andof the tangential
velocity of the inner cylinderl_oTi =R, leading toDer, =AU, /6).

Five independent non-dimensional quantities are needed to fully characterise the fland a Deborah number
related to the axial flowle or De.) areconstitutive parameters, the radius reiois a geometric parameter, and the
rotating Deborah numberDer or DeTi ), or alternatively a Taylor number or a rotational Reynolds number, and the

axial flow Reynolds numberR@, all of which are dynamical parameters. The axial Reynolds number is defined as
Re=25pU/n, i.e., it is based on the hydraulic diamefeg =4A/P =25, whereAis the cross section area aRds
the corresponding wetted perimeter. Elsewhgresasused as the length scale.

After normalisation and integration of Eq. (11), the axial velocity praffld is given by

2 2 ~
U_pYey2 4z Yeiny P Ue BT Uc & 5pp02Uc 4 950029 2
U U U y2 U 2 U4 U U
~3
~384De2 062 1ny + 646De2 20 22 + & (12)
U U y2

where the radial coordinate is presented in normalised foryr=as/d .
In Eqg. (12) the new constant of integratie and constantc, appearin normalized form:EZEZCZ/ p,ZES2

andCz =c3/U . From Eq. (6), and using the stressgg andt,,, the differential equation for the tangential velocity
is obtained. After normalisation and integration, the following tangential velocity profile is obtained:

AL 19 1 eDeT +1Ei»:DeC Lyiny- 16»:DeC 2Ur &
U 4y U 24y° u
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The new nondimensional constant of integratiod is= c43 /U .
Application of the boundary conditions to the velocity profiles provides equations to determine the constants of
integration. No-slip condition of the axial velocity at both walls (Eqg. 12) gives the following cubic equatian on

b +byEp +bpEa + bgts = 0 (14)
with coefficients
0 0 20, 0

1 1 eDe? 1
by = 2(y§ - yiz) +eDe? ﬁ? ‘_zﬁ* 325De§(yg‘ - yf‘) L bp=4ino- ﬁf vt gsteé(yg - yiz)
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01 1L
by = 384DeZ In2; by =-64sDe? ﬁ? —ZE (15)
i o Yi

This cubic equation has the following solution
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Once Cy is known, determination of the other two constants is straightforw@yds obtained from Eq. (12) by

setting the no-slip condition at any of the walls andis calculated with Eq. (13) applying the no-slip condition at the
outer wall. The axial bulk velocity is calculated from its definition for an annulus and is given by
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Settingv =wy;d at y = y; in Eq. (13) gives the angular rotational speed
t ~ ~2 L
eD c -
W= Lobr eT Yt +16UTeDeC yi Iny; - 16UTeDe§yi Iny; L 4UTeDe§ —23 +3CyY; L (18)
VOO 4y 24 Yi Yi E

The stress field can also be presented in nondimensional form using the various non-dimensional parameters
presented. Note the different velocity scales used to normalise axial related and rotation related stress tensor
components.
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The axial pressure gradient is more conveniently written as the Fanning frictionffanthras shown in Pinho and
Oliveira (2000), in the case of the PTT model it is given by

f Re=162C (20)
which can be compared with the corresponding expression for Newtonian fluids
1
(f Rgy =16

(21)
(1+K)2/(1—K)2—(1+K)/(1—K)(]/|n(1/K)) -

The torque required to rotate the inner cylinder is quantified as a torque coefligjerdefinedso that it is unity
for Newtonian fluids ¢ is torque per unit length).

M(R3 - R?
= > (22)
AN Ry Ry

For this flow, it can be shown th&ty, is given by
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Finally, to quantify the rotation it is usual to use either the rotational Reynolds number, @lternatively, the
Taylor number Ta)

1o pr,  Ta &D Ri53 (24 a,b)

which are related to each other, andJer, , asbelow

T_Z—DeDeT- ; Ta= E lH E lWH (25 a,b)

The combination oRe De and DeTi into those more typicalondimensionahumbers, makes them more difficult
to use analytically.

3. Results and discussion

The presentation of results is divided into two parts. First, radial profiles of velocity and stress components are
shown to illustrate the influence of the various relevant non-dimensional numbers. In the second part, results of more
engineering interest are presented for the direct and indirect problems.

3.1. Detailed flow characteristics

In the absence of inner cylinder rotationa(= 0) our solution matches that of Pinho and Oliveira (2000), but this is
not shown here. For inelastic fluids, Escudier et al (2002 a) identified three different flow regimes, according to the
relative strengths of axial and tangential flofvxwR, /U). If & <1, the flow is dominated by the axial flow, fgr>10

rotationdominates and a mixed flow conditions prevail elsewhere.
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Figure 1.Radial profiles of the@ormalised axial (a) and tangential (b) velocities in an annulys=0®.5 for an SPTT
fluid for axial-dominated flow condition®Re= 1,000 Ta= 1,000).

The axial and tangential velocity profiles presented in Figures 1 to 2 pertain to the two limiting flow regimes. In the
axially-dominated flow regime, the variation of the axial velocity profile in Figure 1-a) is like that for no cylinder

rotation in Pinho and Oliveira (2000), with flow elasticim:)(ez) imparting a plug-like shape. In terms of tangential
velocity, the flow elasticity parameter also has a dramatic influence as can be seen in Figure g][ale)2 MRsereases
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the v/(wR,) profile becomes increasingly distorted to a sigmoidal shape argbfe?t in excess of about 10 the profile

is no longer monotonic. This behaviour is akin to that seen by Nouar et al (1998), and also calculated by Escudier et al
(2002b), and is due to the intense shear-thinning of the viscometric viscosity of the fluids. For lower Taylor nhumbers,
leading toZ belowthe present value of 0.006325, the same patterns are observed.

For rotation-dominated flow Figure 2 plots the axial and tangential velocity profiles corresponding to a condition
with & = 200. To understand the observed variations it is important to realise that, whereas in axially dominated flow
the shear-thinning behaviour affects the whole annular space, here the high rates of deformation and the shear-thinning
behaviour concentrate near the inner cylinder. Higher valuds @fould increase the extent of such region, but this
would correspond to conditions where laminar flow becomes unstable. In fact, for Taylor numbers in excess of 50,000
secondary flows are known to appear due to flow instabilities. For the concentric geometry, and in the absence of any
elasticity, the PTT model simplifies to the Newtonian behaviour for which there is a perfect decoupling between axial
and tangential flows.

20 10 .
) ~ (b)
A >t eDe’
/ 08, 5 1
15. il N N 0.01
----- 01
Nt
S N T T N N — 10
\ o6 %\ N 100 i
10l f |
04, ]
L gDez . 1
05, —0. . i I
_____ 0:1 “ J 0.2 N
Nt
--------- 10 S
----- 100 [
o oz o4 os  os . 10 °¥ —— i op
. . . . (r_RI)/(RO_RIJ). 0.0 02 04 0.6 o.(g_Rl)/(Ro_R?).o

Figure 2.Radial profiles of the@ormalised axial (a) and tangential (b) velocities in an annulys=0®.5 for an SPTT
fluid for rotation-dominated flow condition&®é= 1; Ta= 10,000).

As soon asDe? differs from zero both flows are coupled and the axial flow becomes highly distorted towards the
inner cylinder and the peak velocities increase around 15% because of the lower viscosities there. Similarly, for the
tangential velocity in Figure 2-b) a strong deviation of the flow towards the inner cylinder is seen. The effect of the
Deborah number is also weaker than fok 1, becausenow (for & >10) the rates of deformation of the fluid are

weaker. Still, a tendency is observed for the maximum axial velocity to decrease and for the profile to widleh as
increases.
Under the mixed flow conditions, not shown here, the axial and tangential velocity profiles show better the

progression from the Newtonian decoupled flow to the flow dominated by elasti@igegsincreases.

The radial variation of the various stress tensor components is analysed in detail. In Figure 3-a) the shear stress due
to rotation ¢ ,g) is plotted in normalised form and is seen to have a universal form regardless of the vaRees of
TaancDe?. This is immediately clear from inspection of its definition in Eq. (21-b). In contrast, the definition of the

axial shear stress in Eq. (21-a) shows this component not to be indepen&enilTafand eDe? via the constant of
integration C, and Figure 3 also shows its variation, including a set pertaining to the mixed flow regime. For a

Newtonian fluid, or in the absence of rotatiof}, is independent of flow elasticity and balances the axial pressure
gradient as is known from Pinho and Oliveira (2000). For an axial-dominated flow there is a weak dependignce of
oneDe?, becausef the decrease in viscosity due to the rotational flow and this is seen in Figure 3-a). The dependence
on eDe? is clearer in Figure 3-b) which shows the progressioff ,gffrom an independent profile aDe?=0 towards

the profile for a rotation dominated flow. When the flow is dominated by rotation (curv&sst0000), the viscosity

is basically defined by the rotational flow and the weak dependencg,ain eDe? is due to the slight effect of the

axial flow upon the viscosity. Under mixed flow conditions (curvesTas10), the viscosity is strongly affected by

both the axial and the rotational flow and now the variatio gf with eDe? is stronger, reflecting the changes in
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viscosity across the annulu;,is proportional to the axial velocity gradient hence in axial dominated flbwsgoes
to zero near the center of the annulus where the peak velocity occurs. Since rotation deviates the axial flow towards the
inner wall, T, decreasebkere and increases in the outer wall region as is well shown.
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Figure 3.Radial profiles of theondimensional shear stressgg andtg, for an SPTT fluid in annuli witlkk = 0.5: a)
Re= 1,000,Ta=10,000 € = 0.2); b) Re=1 withTa= 10 (€ = 6.325) andTa= 10,000 € = 200).

Due to the combined axial and rotational flows, the tangential axial shear gfte$s non-zero and varies with
elasticity,ReandTa. Since this stress can be normalised in two different ways (c.f. Eq. 19-e) the magnitude of the radial
variations depends on the normalisation and als§ ofhese are not shown here due to space limitations, but a more
thorough investigation is found in Cruz and Pinho (2004).
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Figure 4 Radial profiles of th@ondimensionall ,, normal stress of an SPTT fluid in annuli wih= 0.5: a)Re=
1,000,Ta= 10,000 b) Re= 1, Ta= 10,000.

The axial normal stress variations are shown in Figure 4. These are exclusively due to the strength of the axial flow,
via its radial gradient squared, and fluid elasticity, but are also affected by rotation (c.f. Egq. 21-c) due to the distortions
in the axial flow. For axially dominated flows, Figure 4-a), the stresses increase with flow elasticity and reach maxima

of the order of 100 foeDe?=100. Asrotation increases in strength, the curves move towards the inner cylinder and the
magnitude of the stresses decrease significantly as can be seen in Figure 4-b); note the different ordinates in Figures 4-
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a) and -b) showing a decrease by a factor of 6. As mentioned above, this reduction is due to lower rates of deformation
in the rotation dominated flows.

Finally, for the tangential normal stress thehaviour is qualitatively opposite to that of the axial normal stress.
Tgg is due to the rotational flow, via the radial gradient of the tangential velocity squared, and fluid elasticity. The
effect of the axial flow is more difficult to observe given the monotonic variation of the tangential velocity. Profiles of
Tgg are plotted in Figure 5-a) and 5-fgr axially dominated and rotation dominated flows, respectively. Note the
different ordinates in the figures showing valuesrgj in the axially dominatedase that are 40 times smaller than in

Figure 5-b).
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Figure 5.Radial profiles of theondimensionallgg normal stress of an SPTT fluid in annuli wkh= 0.5: a)Re=
1,000,Ta= 10,000 b) Re= 1, Ta= 10,000.

3.2. Bulk flow characteristics

In analysing the bulk flow characteristics the main concern is to possess expressions that allow the resolution of the
so-called direct and indirect problems, via universal relations that are based on non-dimensional quantities. All the
equations relating the relevant quantities have already been presented in Section 2 and here the focus is on defining the
correct sequence of the calculations and in plotting the corresponding results as a function of the more useful Reynolds
number of the axial flow, Taylor number apDe?.

In the direct problem the Reynolds number (or the axial bulk velocity) and the Taylor number (or rotational speed)
are known quantities and we wish to determine the friction factor (or the pressure gradient) and the torque coefficient
(or the torque). The produdRe is given by Eq. (20) and requires knowledge of the ratjgu whereasCy, , defined

in Eq. (21), needs the ratit;jT/UTi . Due to the non-linear characteristics of the PTT fldiRe and Cy, are not
decoupled quantities sin¢g¢, /U depend®n UT/UTi and vice-versa, as can be seen below.

To obtain these velocity ratios it is necessary to solve a system of three non-linear equations that result from the
application of boundary conditions to Egs. (12) and (13) for the axial and tangential velocities, respectively, and the
calculation of the axial bulk velocity via Eq. (19). The first relation is the cubic equation (14) to det€sminkich

affects bothu./U and UT/UTi and, the quadratic equations (26) and (27) to determine the ngfigg and
Ut /UTi , respectively. Although Eq. (27) is quadraticigq /UTi , its determination is straighforward.

2
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In the indirect problem, the friction factor and torque coefficient are known quantities and the aim is to determine
the Reynolds and the Taylor numbers. In this case the solution is straightforward. To determine the bulk velocity and
angular speed it suffices to use Egs. (17) and (18), respectively and the definitions of the characteristic yglocities

andUt . ThenReandTacan be calculated using their definitions.

The variations offRe and Cy; with Re Taand eDe? for k = 0.5 are shown in Figures 6-a) and 6-b), respectively.

It was found that the relevant independent quantities that deterfRigeand Cy, are justaDe2 andthe velocity ratio
¢, the latter compacting the effects of bd#e andTa according to its definition& = 2T /Re). For axially dominated

flows (¢ <1) fReand Cy; only depends orDe? asrepresented in Figures 6-a) and 6-b) by the curve§ #0.2. The

effect of eDe? is to reduce botHRe and Cn becausethe fluid becomes more shear-thinning thus reducing the
viscosity near the walls. The universal behaviouCgjf is due to the fact that viscosity is defined by the axial flow and
is independent of the magnitude of rotation in this flow regime. Note also that the definitidy db such that it is
always bounded by 1 in the Newtonian limit.
With increased rotation, thiReversusgDe? curves are shifted to the left showing a decrease in friction factor for
the axial flow because of the decreased viscosity imparted to the shear-thinning fluid by the increasingly strong rotation.

As rotation comes to dominate the flow, the axial flow no longer determines the shear-thinning viscosity. The energy
loss decreases for both axial and tangential flow and so the normalised resistance coéRiegtsC,, decreaset

identical values of the elasticigarametegDez.
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Figure 6.Variation offRe(a) andCy; (b) with & andeDe? of an SPTT fluid in annuli witik = 0.5.

Although these effects take place for an elastic fluid, they are due to the inherent shear-tighaingur of the
SPTT fluid and, consequently, the conclusions regardijyg and fRe are in agreement with the observations of

Escudier et al (2002a) for inelastic power law fluids in concentric annuli.
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4. Conclusions

An analytical solution has been deduced for the helical flow of single-mode viscoelastic PTT fluids in concentric
annuli. This flow is formed by the combination of an imposed constant axial pressure gradient with rotation of the inner
cylinder. Expressions in normalized form are presented for the axial and tangential velocities, all stress components and
for the friction factor and torque coefficients.

Under conditions of axial-dominated flow the peak axial velocity is in the center of the annulus and becomes plug

like as eDe? increases, while the tangential velocity progressively distortssigraoidal shape. The tangential shear
stress, that balances the applied torque, has always a unhe&hsaiour and the axial shear stress, balancing the axial

pressure gradient, has quasi-universal variation wieZ. In contrast, for rotation dominated flows the tangential
velocities always have a monotonic variation and the flow is distorted towards the inner cylinder where viscosities are
lower.

For the bulk flow characteristicéRe and Cy, only depend oreDe? for a given annulus when flow is axially
dominated, but they decrease with the velocity rafip &s rotation increases in strength. In all cases, an increase in

eDe? leads to reduce resistance in the axial and rotational flow. It was also foungl ddaquately compacts the
effects ofReandTaonfandCy, .
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