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Abstract.An analytical solution has been derived for the axial flow of Phan-Thien—Tanner (PTT) fluids in concentric annuli with
inner cylinder rotation. The simplified form of the PTT model is used with the linear stress coefficient of Phan-Thien (1978), but the
nonlinearity of the model couples the axial and tangential flows in a complex way. Expressions are derived for the radial variation
of both velocities, as well as for the three shear stresses and the two normal stresses. For engineering purposes expressions are
given relating the friction factor and the torque coefficient to the Reynolds number, the Taylor number, a non-dimensional number

quantifying elastic effects (εDe
2) and the radius ratio. For axial dominated flows fRe and CM  are found to depend only onεDe

2

and the radius ratio, but as the strength of rotation increases both coefficients become dependent on the ratio between bulk axial
and the inner cylinder tangential velocities (ξ )which efficiently compacts the effects of the Reynolds and Taylor numbers.
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1. Introduction

Annular flows of non-Newtonian fluids are found in a wide variety of applications: from drilling oil and gas wells
and well completion operations to industrial processes involving waste fluids, synthetic fibres, foodstuffs and the
extrusion of molten plastics as well as in some flows of polymer solutions. This has motivated a wealth of research on
annular fllows which has been presented by Escudier et al (2002a). Of concern here are mainly previous investigations
with viscoelastic fluids in concentric annuli under laminar flow conditions.

The vast majority of non-Newtonian investigations in annular flows concern purely viscous fluids obeying the
power law model, and yield stress fluids obeying both the Bingham plastic or the Herschel-Bulkley models. For
viscoelastic fluids, investigations on laminar flows are scarcer; one of the first to study viscoelastic concentric annular
flows without rotation was Bhatnagar (1963), who used a Rivlin-Eriksen model, but in the presence of suction and
injection at the cylinder walls. Dierckes and Schowalter (1966) measured the laminar annular flow of polyisobutelene
solutions in the presence of rotating inner walls and showed that symmetry of the flow could be predicted from an
inelastic theory based on a power law fitted to the experimental rheological data. Kaloni (1965) and Kulshrestha (1962)
derived analytical solutions for viscoelastic fluid obeying Oldroyd's equations while Pinho and Oliveira (2000) solved
analytically the concentric annular laminar flow without inner cylinder rotation for the simplified PTT model. That
work is the immediate predecessor of the present investigation since the adopted rheological constitutive equation is the
same, but now the objective is the investigation of the annular flow of the PTT fluid with inner cylinder rotation.

Other analytical studies of swirling viscoelastic flows have been motivated by applications in rheology and
tribology, as listed in Cruz and Pinho (2004).

The paper is organised as follows: in the next section the relevant equations are presented, the various non-
dimensional numbers are defined and the analytical solution is derived. Plots of relevant quantities are made and
discussed in Section 3 and a summary of the main conclusions closes the paper.

2. Governing equations and analytical solution

The flow geometry is a concentric annulus of inner and outer radius RI  and RO, respectively, defining an annular
gap, δ ≡ RO − RI , and radius ratio, κ ≡ RI RO . The flow is fully-developed, and so both the axial velocity, u, and the
tangential velocity, v, are only functions of the radial coordinate r; the axial pressure gradient is constant and the inner
cylinder is rotating at constant angular velocity, 

€ 

ω . Under these conditions the momentum equations in the axial, z,
tangential, θ , and radial, r, directions  are
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The extra stresses are given by the simplified form of the PTT constitutive equation (Phan-Thien and Tanner, 1977)

f tr τ( )( )τ+ λ τ
∇

= 2ηD  with f tr τ( )( ) =1 +
ελ
η

tr τ( ) (2)

where D is the deformation rate tensor, λ  is the relaxation time, η  is the viscosity coefficient and ε  is a parameter of
the model limiting the extensional viscosity of the fluid. The stress coefficient function f tr τ( )( ) , defined in Eq. (2), is

the linearization of the more general exponential coefficient and τ
∇

 denotes Oldroyd's upper convective derivative

τ
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=
Dτ
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− τ.∇u − ∇u( )T.τ . For this flow geometry the constitutive equation simplifies to
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where the stress coefficient f τ ii( ) was used for compactness. The stress coefficient is now given by the following non-

linear cubic equation
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(5)

The boundary conditions for this problem  express no-slip at the walls: r = RI ⇒ u = 0, v = ωRI  and
r = RO ⇒ u = 0,v = 0. Introducing the torque per unit length of the cylinder (M), integration of Eq. (1-c) gives the

variation of one stress component: 

€ 

τ rθ = M 2πr 2( ) . Substituting this result into Eq. (4-a) provides the following

expression

r
d

dr
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r
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 =

M

2πηr2 f τ ii( ) (6)

 that can be used to calculate τθθ  in Eq. (3-c), giving the result 

€ 

τθθ = λM 2 2π 2ηr 4( ).
Now, using this stress into the radial momentum equation (Eq. 1-b) gives

r
∂p

∂r
= ρv2 −

λM2

2π 2ηr 4 (7)

which provides the radial distribution of pressure once the radial variation of the tangential velocity is known.
To obtain the axial velocity it is still necessary to deduce expressions for τrz  and τzz, that depend only on

derivatives of velocity and pressure. Eq. (1-a) can be integrated into

τrz =
∂p

∂z

r

2
+

c2
r

(8)

where c2 is an integration constant. With τrz  also given by Eq. (4-b), the stress coefficient function is determined as

f τ ii( ) =
η du
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∂p

∂z

r

2
+ c2

r

(9)
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Squaring this function and using it in Eq. (3-b) leads to
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Now, it is possible to determine the axial and tangential velocity profiles. According to Eq. (9), the definition of
f τ ii( ) and after substitution of 

€ 

τθθ  and using Eq. (10), the following axial velocity gradient is deduced

€ 

du

dr
= 1

η
∂p

∂z

r

2
+ c2

r

 
  

 
  +

2λ2ε

η3
∂p

∂z

r

2
+ c2

r

 
  

 
  

M 2

4π 2r 4
+ ∂p

∂z

r

2
+ c2

r

 
  

 
  
2 

 
 

  

 
 
 

  
(11)

A solution in terms of non-dimensional quantities is sought. For simplicity and prior to integration, the following

characteristic parameters are defined: an axial velocity scale 

€ 

Uc = −p,zδ
2 8η( ) , a tangential velocity scale

€ 

UT = M πηδ( ) , and the corresponding characteristic Deborah numbers 

€ 

Dec = λUc δ  and

€ 

DeT = λUT δ . Alternative

Deborah numbers are defined on the basis of the axial bulk velocity (U leading to 

€ 

De≡ λU δ ) and of the tangential
velocity of the inner cylinder (

€ 

UTi
= ωRI  leading to 

€ 

DeTi
= λUTi

δ ).

Five independent non-dimensional quantities are needed to fully characterise the flow: ε  and a Deborah number
related to the axial flow (De or 

€ 

Dec) are constitutive parameters, the radius ratio κ  is a geometric parameter, and the

rotating Deborah number (

€ 

DeT  or 

€ 

DeTi
), or alternatively a Taylor number or a rotational Reynolds number, and the

axial flow Reynolds number (Re), all of which are dynamical parameters. The axial Reynolds number is defined as

€ 

Re= 2δρU η, i.e., it is based on the hydraulic diameter 

€ 

DH = 4A P = 2δ , where A is the cross section area and P is
the corresponding wetted perimeter. Elsewhere, 

€ 

δ  was used as the length scale.
After normalisation and integration of Eq. (11), the axial velocity profile 

€ 

u U  is given by
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where the radial coordinate is presented in normalised form as 

€ 

y = r /δ .

In Eq. (12) the new constant of integration 

€ 

c3 and constant 

€ 

c2 appear in normalized form: 

€ 

˜ c 2 ≡ 2c2 p,zδ
2

and

€ 

˜ c 3 ≡ c3 U . From Eq. (6), and using the stresses 

€ 

τθθ  and 

€ 

τ zz, the differential equation for the tangential velocity
is obtained. After normalisation and integration, the following tangential velocity profile is obtained:
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The new nondimensional constant of integration is 

€ 

˜ c 4 = c4δ U .
Application of the boundary conditions to the velocity profiles provides equations to determine the constants of

integration. No-slip condition of the axial velocity at both walls (Eq. 12) gives the following cubic equation on 

€ 

˜ c 2
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This cubic equation has the following solution
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Once 

€ 

˜ c 2 is known, determination of the other two constants is straightforward: 

€ 

˜ c 3 is obtained from Eq. (12) by

setting the no-slip condition at any of the walls and 

€ 

˜ c 4  is calculated with Eq. (13) applying the no-slip condition at the
outer wall.  The axial bulk velocity is calculated from its definition for an annulus and is given by
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Setting 

€ 

v = ωyiδ  at 

€ 

y = yi  in Eq. (13) gives the angular rotational speed
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The stress field can also be presented in nondimensional form using the various non-dimensional parameters
presented. Note the different velocity scales used to normalise axial related and rotation related stress tensor
components.
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The axial pressure gradient is more conveniently written as the Fanning friction factor f and, as shown in Pinho and
Oliveira (2000), in the case of the PTT model it is given by

€ 

f Re= 16
Uc
U

(20)

which can be compared with the corresponding expression for Newtonian fluids

€ 

f Re( )N = 16
1

1+κ( )2 1−κ( )2 − 1+κ( ) 1−κ( ) 1 ln 1 κ( )( )
(21)

The torque required to rotate the inner cylinder is quantified as a torque coefficient 

€ 

CM  defined so that it is unity
for Newtonian fluids (M is torque per unit length).

€ 

CM ≡
M Ro

2 − Ri
2( )

4πωηRo
2Ri

2
(22)

For this flow, it can be shown that 

€ 

CM  is given by
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€ 

CM = UT
UTi

1−κ 2( ) 1−κ( )
4κ

(23)

Finally, to quantify the rotation it is usual to use either the rotational Reynolds number (T) or, alternatively, the
Taylor number (Ta)

€ 

T = ρωRIδ
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; 

€ 

Ta= ρω
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3 (24 a,b)

which are related to each other, and to 

€ 

DeTi
, as below
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The combination of Re, De and 

€ 

DeTi
 into those more typical nondimensional numbers, makes them more difficult

to use analytically.

3. Results and discussion

The presentation of results is divided into two parts. First, radial profiles of velocity and stress components are
shown to illustrate the influence of the various relevant non-dimensional numbers. In the second part, results of more
engineering interest are presented for the direct and indirect problems.

3.1. Detailed flow characteristics

In the absence of inner cylinder rotation (

€ 

Ta= 0) our solution matches that of Pinho and Oliveira (2000), but this is
not shown here. For inelastic fluids, Escudier et al (2002 a) identified three different flow regimes, according to the
relative strengths of axial and tangential flow (

€ 

ξ ≡ ωRI U ). If 

€ 

ξ < 1, the flow is dominated by the axial flow, for 

€ 

ξ > 10
rotation dominates and a mixed flow conditions prevail elsewhere.
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Figure 1. Radial profiles of the normalised axial (a) and tangential (b) velocities in an annulus of κ = 0.5 for an SPTT
fluid for axial-dominated flow conditions (Re= 1,000; Ta= 1,000).

The axial and tangential velocity profiles presented in Figures 1 to 2 pertain to the two limiting flow regimes. In the
axially-dominated flow regime, the variation of the axial velocity profile in Figure 1-a) is like that for no cylinder

rotation in Pinho and Oliveira (2000), with flow elasticity (

€ 

εDe2) imparting a plug-like shape. In terms of tangential

velocity, the flow elasticity parameter also has a dramatic influence as can be seen in Figure 1-b). As 

€ 

εDe2 increases
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the 

€ 

v (ωRI )  profile becomes increasingly distorted to a sigmoidal shape and for 

€ 

εDe2 in excess of about 10 the profile
is no longer monotonic. This behaviour is akin to that seen by Nouar et al (1998), and also calculated by Escudier et al
(2002b), and is due to the intense shear-thinning of the viscometric viscosity of the fluids. For lower Taylor numbers,
leading to 

€ 

ξ  below the present value of 0.006325, the same patterns are observed.
For rotation-dominated flow Figure 2 plots the axial and tangential velocity profiles corresponding to a condition

with 

€ 

ξ = 200. To understand the observed variations it is important to realise that, whereas in axially dominated flow
the shear-thinning behaviour affects the whole annular space, here the high rates of deformation and the shear-thinning
behaviour concentrate near the inner cylinder. Higher values of Ta would increase the extent of such region, but this
would correspond to conditions where laminar flow becomes unstable. In fact, for Taylor numbers in excess of 50,000
secondary flows are known to appear due to flow instabilities. For the concentric geometry, and in the absence of any
elasticity, the PTT model simplifies to the Newtonian behaviour for which there is a perfect decoupling between axial
and tangential flows.
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Figure 2. Radial profiles of the normalised axial (a) and tangential (b) velocities in an annulus of κ = 0.5 for an SPTT
fluid for rotation-dominated flow conditions (Re= 1; Ta= 10,000).

As soon as 

€ 

εDe2 differs from zero both flows are coupled and the axial flow becomes highly distorted towards the
inner cylinder and the peak velocities increase around 15% because of the lower viscosities there. Similarly, for the
tangential velocity in Figure 2-b) a strong deviation of the flow towards the inner cylinder is seen. The effect of the
Deborah number is also weaker than for 

€ 

ξ < 1, because now (for 

€ 

ξ > 10) the rates of deformation of the fluid are

weaker. Still, a tendency is observed for the maximum axial velocity to decrease and for the profile to widen as 

€ 

εDe2

increases.
Under the mixed flow conditions, not shown here, the axial and tangential velocity profiles show better the

progression from the Newtonian decoupled flow to the flow dominated by elasticity as 

€ 

εDe2 increases.
 The radial variation of the various stress tensor components is analysed in detail. In Figure 3-a) the shear stress due

to rotation (

€ 

τ rθ ) is plotted in normalised form and is seen to have a universal form regardless of the values of Re,

Ta and

€ 

εDe2. This is immediately clear from inspection of its definition in Eq. (21-b). In contrast, the definition of the

axial shear stress in Eq. (21-a) shows this component not to be independent of Re, Ta and 

€ 

εDe2 via the constant of
integration 

€ 

˜ c 2 and Figure 3 also shows its variation, including a set pertaining to the mixed flow regime. For a
Newtonian fluid, or in the absence of rotation, 

€ 

Trz is independent of flow elasticity and balances the axial pressure
gradient as is known from Pinho and Oliveira (2000). For an axial-dominated flow there is a weak dependence of 

€ 

Trz

on

€ 

εDe2, because of the decrease in viscosity due to the rotational flow and this is seen in Figure 3-a). The dependence

on 

€ 

εDe2 is clearer in Figure 3-b) which shows the progression of 

€ 

Trz from an independent profile at 

€ 

εDe2=0 towards
the profile for a rotation dominated flow. When the flow is dominated by rotation (curves for Ta=10000), the viscosity

is basically defined by the rotational flow and the weak dependence of 

€ 

Trz on 

€ 

εDe2 is due to the slight effect of the
axial flow upon the viscosity. Under mixed flow conditions (curves for Ta=10), the viscosity is strongly affected by

both the axial and the rotational flow and now the variation of 

€ 

Trz with 

€ 

εDe2 is stronger, reflecting the changes in
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viscosity across the annulus. 

€ 

Trzis proportional to the axial velocity gradient hence in axial dominated flows 

€ 

Trz goes
to zero near the center of the annulus where the peak velocity occurs. Since rotation deviates the axial flow towards the
inner wall, 

€ 

Trz decreases here and increases in the outer wall region as is well shown.
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Figure 3. Radial profiles of the nondimensional shear stresses 

€ 

τ rz and 

€ 

τθr  for an SPTT fluid in annuli with κ = 0.5.: a)

Re= 1,000, Ta=10,000 (

€ 

ξ = 0.2); b) Re=1 with Ta= 10 (

€ 

ξ = 6.325) and Ta= 10,000 (

€ 

ξ = 200).

Due to the combined axial and rotational flows, the tangential axial shear stress 

€ 

τθz  is non-zero and varies with
elasticity, Reand Ta. Since this stress can be normalised in two different ways (c.f. Eq. 19-e) the magnitude of the radial
variations depends on the normalisation and also on 

€ 

ξ . These are not shown here due to space limitations, but a more
thorough investigation is found in Cruz and Pinho (2004).
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Figure 4. Radial profiles of the nondimensional 

€ 

Tzz normal stress of an SPTT fluid in annuli with κ = 0.5: a) Re=
1,000, Ta= 10,000; b) Re= 1, Ta= 10,000.

The axial normal stress variations are shown in Figure 4. These are exclusively due to the strength of the axial flow,
via its radial gradient squared, and fluid elasticity, but are also affected by rotation (c.f. Eq. 21-c) due to the distortions
in the axial flow. For axially dominated flows, Figure 4-a), the stresses increase with flow elasticity and reach maxima

of the order of 100 for 

€ 

εDe2=100. As rotation increases in strength, the curves move towards the inner cylinder and the
magnitude of the stresses decrease significantly as can be seen in Figure 4-b); note the different ordinates in Figures 4-
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a) and -b) showing a decrease by a factor of 6. As mentioned above, this reduction is due to lower rates of deformation
in the rotation dominated flows.

Finally, for the tangential normal stress the behaviour is qualitatively opposite to that of the axial normal stress.

€ 

Tθθ  is due to the rotational flow, via the radial gradient of the tangential velocity squared, and fluid elasticity. The

effect of the axial flow is more difficult to observe given the monotonic variation of the tangential velocity. Profiles of

€ 

Tθθ  are plotted in Figure 5-a) and 5-b) for axially dominated and rotation dominated flows, respectively. Note the

different ordinates in the figures showing values of 

€ 

Tθθ  in the axially dominated case that are 40 times smaller than in

Figure 5-b).
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Figure 5. Radial profiles of the nondimensional 

€ 

Tθθ  normal stress of an SPTT fluid in annuli with κ = 0.5: a) Re=

1,000, Ta= 10,000; b) Re= 1, Ta= 10,000.

3.2. Bulk flow characteristics

In analysing the bulk flow characteristics the main concern is to possess expressions that allow the resolution of the
so-called direct and indirect problems, via universal relations that are based on non-dimensional quantities. All the
equations relating the relevant quantities have already been presented in Section 2 and here the focus is on defining the
correct sequence of the calculations and in plotting the corresponding results as a function of the more useful Reynolds

number of the axial flow, Taylor number and 

€ 

εDe2.
In the direct problem the Reynolds number (or the axial bulk velocity) and the Taylor number (or rotational speed)

are known quantities and we wish to determine the friction factor (or the pressure gradient) and the torque coefficient
(or the torque). The product 

€ 

fRe is given by Eq. (20) and requires knowledge of the ratio 

€ 

Uc U  whereas 

€ 

CM , defined

in Eq. (21), needs the ratio 

€ 

UT UTi
. Due to the non-linear characteristics of the PTT fluid, fRe and 

€ 

CM  are not

decoupled quantities since 

€ 

Uc U  depends on 

€ 

UT UTi
and vice-versa, as can be seen below.

To obtain these velocity ratios it is necessary to solve a system of three non-linear equations that result from the
application of boundary conditions to Eqs. (12) and (13) for the axial and tangential velocities, respectively, and the
calculation of the axial bulk velocity via Eq. (19). The first relation is the cubic equation (14) to determine 

€ 

˜ c 2, which
affects both 

€ 

Uc U  and 

€ 

UT UTi
and, the quadratic equations (26) and (27) to determine the ratios 

€ 

Uc U  and

€ 

UT UTi
, respectively. Although Eq. (27) is quadratic on 

€ 

UT UTi
, its determination is straighforward.
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In the indirect problem, the friction factor and torque coefficient are known quantities and the aim is to determine
the Reynolds and the Taylor numbers. In this case the solution is straightforward. To determine the bulk velocity and
angular speed it suffices to use Eqs. (17) and (18), respectively and the definitions of the characteristic velocities 

€ 

Uc
and 

€ 

UT . Then Re and Ta can be calculated using their definitions.

The variations of 

€ 

fRe and 

€ 

CM  with Re, Ta and 

€ 

εDe2 for 

€ 

κ = 0.5 are shown in Figures 6-a) and 6-b), respectively.

It was found that the relevant independent quantities that determine 

€ 

fRe and 

€ 

CM  are just 

€ 

εDe2 and the velocity ratio

€ 

ξ , the latter compacting the effects of both Re and Ta according to its definition (

€ 

ξ ≡ 2T /Re). For axially dominated

flows (

€ 

ξ < 1) fRe and 

€ 

CM  only depends on 

€ 

εDe2 as represented in Figures 6-a) and 6-b) by the curves for 

€ 

ξ ≤ 0.2. The

effect of 

€ 

εDe2 is to reduce both fRe and 

€ 

CM  because the fluid becomes more shear-thinning thus reducing the
viscosity near the walls. The universal behaviour of 

€ 

CM  is due to the fact that viscosity is defined by the axial flow and
is independent of the magnitude of rotation in this flow regime. Note also that the definition of 

€ 

CM  is such that it is
always bounded by 1 in the Newtonian limit.

With increased rotation, the fRe versus 

€ 

εDe2 curves are shifted to the left showing a decrease in friction factor for
the axial flow because of the decreased viscosity imparted to the shear-thinning fluid by the increasingly strong rotation.
As rotation comes to dominate the flow, the axial flow no longer determines the shear-thinning viscosity. The energy
loss decreases for both axial and tangential flow and so the normalised resistance coefficients fRe and 

€ 

CM  decrease at

identical values of the elasticity parameter

€ 

εDe2.

0

5

10

15

20

25

10-9 10-7 10-5 10-3 10-1 101 103 105

≤ 0.2
2
20
200

fR
e

εDe
2

ξ
(a)

 

0.0

0.2

0.4

0.6

0.8

1.0

10-8 10-6 10-4 10-2 100 102 104

≤ 0.2
2
20
200

C
M

εDe
2

ξ

(b)

Figure 6. Variation of fRe (a) and

€ 

CM  (b) with 

€ 

ξ  and 

€ 

εDe2 of an SPTT fluid in annuli with κ = 0.5.

Although these effects take place for an elastic fluid, they are due to the inherent shear-thinning behaviour of the
SPTT fluid and, consequently, the conclusions regarding 

€ 

CM  and fRe are in agreement with the observations of
Escudier et al (2002a) for inelastic power law fluids in concentric annuli.
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4. Conclusions

An analytical solution has been deduced for the helical flow of single-mode viscoelastic PTT fluids in concentric
annuli. This flow is formed by the combination of an imposed constant axial pressure gradient with rotation of the inner
cylinder. Expressions in normalized form are presented for the axial and tangential velocities, all stress components and
for the friction factor and torque coefficients.

Under conditions of axial-dominated flow the peak axial velocity is in the center of the annulus and becomes plug

like as 

€ 

εDe2 increases, while the tangential velocity progressively distorts to a sigmoidal shape. The tangential shear
stress, that balances the applied torque, has always a universal behaviour and the axial shear stress, balancing the axial

pressure gradient, has quasi-universal variation with 

€ 

εDe2. In contrast, for rotation dominated flows the tangential
velocities always have a monotonic variation and the flow is distorted towards the inner cylinder where viscosities are
lower.

For the bulk flow characteristics, fRe and 

€ 

CM  only depend on 

€ 

εDe2 for a given annulus when flow is axially
dominated, but they decrease with the velocity ratio (

€ 

ξ ) as rotation increases in strength. In all cases, an increase in

€ 

εDe2 leads to reduce resistance in the axial and rotational flow. It was also found that 

€ 

ξ  adequately compacts the
effects of Re and Ta on f and 

€ 

CM .
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