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Abstract. The purpose of the present study is to assess the importance of Material-Frame-Invariance (MFI) when
modeling practical fluid flows. The MFI is a fundamental principle of continuum mechanics and an important and
controversial topic when applied to derive constitutive laws for turbulent Newtonian flows and viscoelastic liquids.
The results of direct numerical simulations of the Navier-Stokes equations for the two-dimensional flow past a
circular cylinder are used to illustrate and to support this study. The angular velocity of the principal directions of
the rate-of-deformation tensor are calculated in order to obtain an Fuclidean objective vorticity tensor. This has
direct consequences on the numerical simulations for various industrial fields (aeronautics, automotive, polymer
processing, etc.). From the point of view of an engineer, the paper raises questions concerning the flow regions
where the MFI should be taken into account or reasonably neglected.
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1. Introduction

Laminar flows of viscoelastic liquids and turbulent flows of Newtonian fluids carry widespread scientific
and industrial interest due to their numerous applications in aeronautics, environment, automotive, polymer
processing, paints, food, etc. In the process of deriving constitutive laws to predict such complex flows, the
principle of material frame-indifference, hereafter named 'MFT’, is said to play an important role (Truesdell and
Noll, 1965). MFI is a general purpose principle emerging from continuum mechanics. This principle stems from
the indifference of material properties to its observation : two observers in different reference frames should
see the same material properties of a continuous media. The role and implications of MFI remain to date
controversial in continuum mechanics (Liu, 2004 ; Murdoch, 2003). It also appears to be closely related to the
mathematical property of Euclidean objectivity.

1.1. Euclidean objectivity

Euclidean objectivity was the cornerstone of the rheological theory of Oldroyd, 1950, who introduced the
Euclidean objective Oldroyd derivative in his differential model of viscoelastic stresses (see also Joseph, 1990,
page 7). Euclidean objectivity is a property regarding the transformation behavior of a tensor T. Considering
two different observers related by a time-dependent rigid transformation (rotation or translation of the reference
frame known as a Euclidean transformation), a second-order tensor T will be qualified as Euclidean objective if

™ =QTQ". (1)

In Eq. (1), T is the tensor given in a reference frame R, T* is the same tensor expressed in a new frame R*,
and Q(¢) the time-dependent matrix representing the rigid rotation from R to R*. It is well known that the
rate-of-deformation tensor

1
S = 3 (Vv + VVT) (2)
is Euclidean objective, whereas the vorticity tensor
1
W= (Vv —wv') 3)

which measures the rate of rotation with respect to an arbitrary reference frame, is not Euclidean objective.
In these equations, the velocity gradient is defined as (Vv);; = dv;/0z;, and Vv is its transpose.



1.2. Principle of material frame-indifference

The principle of MFT states that constitutive laws of an Euclidean objective quantity should be independent
of observers. Physically, this means that different observers will see the same material property. Mathematically,
this can be expressed as follows. Given T = F(X;) in the reference frame R, and T* = F*(X7) in the reference
frame R* , where (X;, X});=1, are some properties in the respective frames, then we must have F* = F, i.e.
the constitutive functions are form-invariant under any Euclidean transformation. Combining the definition of
objectivity equation (1) with the requirement of MFI, provides the following relationship

F(X;) = QF(X;)Q". (4)

This relationship is called the condition of material objectivity (see Liu, 2004). It is also sometimes named in
short ’objectivity’ in the literature. An interesting consequence of Eq. (4) is that if one of the arguments X; is
a non-objective quantity, then the constitutive model will not satisfy MFI, nor will it be Euclidean objective.
We provide such an example in section 4.

The independence of objectivity and MFI has been disputed in a recent paper by Murdoch, 2003, in which
it is claimed that MFT is a consequence of Euclidean objectivity. Yet, it is widely admitted in the literature that
these notions are distinct. Liu, 2004 provides examples for which constitutive functions of elastic solids can be
Euclidean objective without satisfying MFI. Another known example is three-dimensional (3-D) turbulence®.
Speziale, 1998 showed that the modeled Reynolds stress equations do not satisfy MFI, although they are
Euclidean objective. More generally, Speziale, 1998 established the exact circumstances under which the flow
dynamics should give rise to constitutive laws which satisfy the principle of MFI : he proved that MFI should
hold whenever there is a clear separation of time scales between the mean and fluctuating motions. This does
not hold for 3-D turbulence, but does apply to two-dimensional (2-D) turbulence. A practical implication of
this important result is that turbulence models when applied in the 2-D limit should satisfy MFI. Ristorcelli
et al., 1995 proposed a turbulence model exhibiting this property.

1.3. Material frame-indifference in the context of explicit algebraic stress models

Another interesting result in Speziale, 1998 is that any constitutive equation with explicit dependence of
the vorticity will never satisfy the principle of MFI, eventhough this equation can be Euclidean objective. This
result, which was established in the framework of second-order closures for turbulence based on the Reynolds
stress transport equations, appears to hold for the development of explicit algebraic stress models. Such models
are derived through reduction of constitutive differential equations, for instance Oldroyd-B for viscoelastic
fluids and Reynolds stress transport equations for turbulent flows. The reduction of the differential equations
is usually based on an equilibrium hypothesis in the form Db/Dt ~ 0, applied to a traceless tensor b, (see
Mompean et al., 1998 ). Algebraic models based on this hypothesis are non-objective. A closer analysis shows
that frame-dependence enters implicitly in such models through the occurrence of the non-objective material
derivative D /Dt in the equilibrium assumption. As a consequence, these models can be closed with a polynomial
dependence in the form

T =1(S,W,{r}), (5)

where 7 is the stress tensor, and {.} represents the trace operator.

The exact mathematical expression of the dependence in the above equation is not needed for the present
discussion. The important point here is that frame-dependence enters ezplicitly in Eq. (5) due to the occurrence
of vorticity, which is non-objective. Any such explicit stress function cannot satisfy the principle of MFI as
expressed in Eq. 4. The non-objectivity of tensor W was discussed by Drouot, 1976, who also proposed a new
Euclidean objective vorticity tensor. In this paper, a new kinematic tensor €2 was defined as the rate of rotation
of tensor S at a particle, or equivalently the rate of rotation of the principal directions of S. Mathematically,
the angular velocity tensor €2 is given by

D €;
Dt

where D/Dt is the material time derivative and e; the unit eigenvectors of S. Drouot, 1976 then introduced the
Euclidean objective rate of rotation defined as the difference

= ﬂ.ei, (6)

W-W-Q. (7)

!In fluid mechanics, the kinetic theory of gases was the first to be shown not to satisfy MFIL.



Physically, this new tensor W measures the rate of rotation of a particle with respect to the direction of
maximum stretch at that particle. It can be formally shown that, although W and € are frame-dependent,
their difference W is Euclidean objective.

In recent studies, an improved procedure involving the Euclidean objective vorticity W was proposed to
get general algebraic Euclidean objective stress expressions. Rumsey et al., 2000 applied this procedure in the
context of turbulence closure, whereas Mompean et al., 2003 applied a similar technique for extra-stresses in
viscoelastic liquids. These new models are based on a general Euclidean objective equilibrium hypothesis in the
form Db/Dt ~ 0, where D/Dt is an Euclidean objective derivative. Mompean et al., 2003 also showed how a
suitable choice for the Euclidean objective derivative D/Dt (Jaumann or Harnoy derivative, or any weighted
average of these) allowed prediction of a non-zero second normal stress difference, a feature that both the
differential Oldroyd-B model and the frame-dependent algebraic model of Mompean et al., 1998 would fail to
provide. With this Euclidean objective equilibrium assumption, a new polynomial expansion for the stresses is

T=17(S,W,{7}), (8)

where the functional dependence now includes the Euclidean objective vorticity (see Eq. 7).

From this brief review, it appears that the principle of MFT has wide applications in fluid mechanics. Yet,
truly frame-independent stress models remain scarce in the literature. Also, the circumstances under which
MEFT should be taken into account in practical engineering flows remain unclear. We propose in this paper to
use the Euclidean objective rate of rotation W, i.e. the difference between the vorticity tensors W and €, as a
measure of the influence of MFI. To achieve this goal, results from numerical simulations of the Navier-Stokes
equations will be considered for the 2D-flow past a circular cylinder.

The paper is organized as follows. In section 2, we provide the methodology for computing and analyzing
fields of angular velocity €2 for complex flows. In section 3, this methodology is applied to the flow past a circular
cylinder. In section 4, the consequences of MFI upon algebraic extra-stress models for viscoelastic fluids are
examined. Finally, the results are discussed in section 5.

2. Evaluation of the Euclidean objective vorticity tensor

In this section, we provide the methodology for evaluating and analyzing fields of the angular velocity €2
(the rate of rotation of tensor S). The discussion starts with simple flows for which the interpretation of the
principal directions of S, as well as its rotation velocity, are straightforward. We shall consider the case of
uniform extension, uniform shear, and non-uniform shear (Couette flow). The results for these simple flows will
be used to help in the interpretation of complex flows. Finally, a general method for computing Q in complex
two-dimensional flows is presented.

2.1. Flow classifier

In order to locally identify the nature of the flow kinematics, a general purpose flow classifier is needed.
In this study the flow classifier proposed by Astarita, 1979 will be used. Astarita’s criterion is based on the
dimensionless parameter R defined as

(W'}
{s2}”
with {.} representing the trace operator. This parameter is a measure of how much the material avoids stretching

through rotation relative to the principal directions of S. Following Mompean et al., 2003, this parameter is
re-normalized as

_1-R

=17 R
The parameter D is bounded between -1 and +1, which avoids numerical problems whenever R gets large. Its
limiting values in the considered flows are discussed in the next subsection.

R= 9)

(10)

2.2. Extensional, shear and Couette flows
2.2.1. Uniform extensional flow

For a uniform planar extensional flow the rate-of-deformation tensor and the vorticity tensor are
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with ¢ the uniform elongation rate independent of the space coordinates. For é > 0 (extensional flow), the
eigenvectors are e; = (—1,0)” and e = (0, —1)7, with ey related to the first eigenvalue +¢, and ey related to
the second eigenvalue —é. The angle ¢ between the second eigenvector and the inertial Cartesian basis is —m/2.
For é < 0, the eigenvectors are e; = (0,—1)7 and e = (1,0)”. The angle ¢ between the second eigenvector
and the inertial Cartesian basis is ¢ = 0.

In flow regions characterized by uniform (space-independent) elongation, the principal direction ¢ is fixed
with respect to any inertial reference frame, which implies that the angular velocity 2 in such regions will be
zero. Therefore, for uniform elongation flows, {WQ} = {W?2} = 0, which implies R = 0, and hence D = +1
(see Eq. 9 and 10) .

2.2.2. Uniform shear flow

For a two-dimensional uniform shear flow the rate-of-deformation tensor and the vorticity tensor are

S

where 7 is the uniform (space-independent) shear rate. In this case, the eigenvectors are e; = (—1,—1)7 and
ex = (1,—1)7, with e; related to the first eigenvalue 4+, and ez related to the second eigenvalue —%. The
angle ¢ between the second eigenvector and the inertial Cartesian basis is —7 /4.

In flow regions characterized by uniform (space-independent) shear, the principal direction ¢ is again fixed
with respect to any inertial reference frame, which implies that the angular velocity €2 in such regions will also

be zero. For uniform shear flow, {W_} = {W?2} = —242, whereas {S?} = 242, hence R = 1, and D = 0.
2.2.3. Non-uniform shear flow : Couette flow

We now consider the Couette flow of a Newtonian fluid between two cylinders with radius R; and Ry > R;.
This flow is of particular interest because it is a shear flow having a non-uniform (space-dependent) shear rate.
In a Couette flow, the fluid is submitted to a rotation induced by the movement of the inner cylinder at velocity
w1. The velocity field in the polar basis (e, es) corresponding to the polar coordinates (r, 6), is given as

1 r
’UTZO, U9:A<;—R—§>, (13)

where A = w1 R?R3/(R? — R2). Since there is no radial component of velocity, the particle trajectories are
circles. From the velocity field, we can deduce the shear stress components and the vorticity tensor again
expressed in the polar basis,

S:[—f?/ﬂ _%/rg]’ W:[A/OR% et (14)

It is interesting to note that the shear flow rate here depends on the radius r. The angle ¢ between the second
eigenvector of S and the non-inertial polar basis is found to be —7/4, in agreement with the result for the
uniform shear flow. This property holds whether the shear rate is uniform or not.

We know from the above arguments that the eigenvectors of S in a Couette flow have a fixed direction with
respect to the polar basis (e, ep). From this, we deduce that from the point of view of an observer in an inertial
reference frame the eigenvectors of S are rotating at the angular velocity ve/r. Therefore, the rate of rotation
of the principal directions of S, again expressed in the polar basis, is given by

o Al-)
_A(%z_l) . =) (15)

R3

Q:

This simple example proves that the angular velocity €2 can be non zero in flow regions characterized by a
space-dependent shear rate. The case of the Couette flow is particularly illustrative in the discussion of MFI.
From equations (15) and (14), it is found that the Euclidean objective vorticity tensor in a Couette flow is

W = [ A?TQ _’%/rg ] (16)

Hence, {W2} = {S?}, which implies that D = 0. A Couette flow is a shear flow, and identified as such by the
flow classifier D. Note that if {W?} were to be used instead of {W2} in Eq. (9) the flow classifier D would not



be equal to zero, and the Couette flow would be misinterpreted as not being a shear flow.

From the above arguments, we can infer different flow patterns in which the angular velocity € is likely to be
non-zero. The first situation is the transition between regions having distinct uniform kinematics. For instance,
in a region of transition between uniform extension and uniform shear, the angle ¢ ranges from —7/2 to —m /4.
This will induce an anti-clockwise angular velocity €2. The second situation is a shear flow including rotation,
as illustrated by the Couette flow in which € is clearly non-zero. More genererally, it is expected that flows
implying significant rotation and (or) streamline curvature, such as flows in curved ducts for instance, should
generate non-zero angular velocity of the principal directions of S.

Finally, the special instance of rigid body motion (translation or rotation) should be mentioned. For rigid
body motion, the principal directions of tensor S are not defined and we can arbitrarily force € to be zero. As
the flow approaches rigid body rotation, {S?} — 0, hence R — oo and D — —1. For rigid body translation,
both S and W are zero, hence the parameter R is undetermined.

2.3. General method for complex two-dimensional flows

In complex flows the angular velocity €2 must be evaluated numerically. Essentially, two methods exist
to compute €. The first method requires to solve the tensorial equation (6). Since the evaluation of the
eigenvectors is required, this direct approach is numerically costly and cumbersome, even for two-dimensional
flows. This method can also cause troubles in the orientation of the eigenvectors since the eigenvector basis can
be arbitrarily rotated of +7. In flows having strong streamline curvature (for instance the flow in a U-duct), it
could generate erroneous values of €.

The second method was proposed by Gatski and Jongen, 2000 for two-dimensional flows. In 2D-flows the
eigenvalues of Q are a1 = —az = /{S2}/2, with {S?} the trace of S2. The angular velocity € can be
interpreted as the material derivative of the angle ¢ between the eigenvector basis and the fixed inertial basis,
i. e

0 B
- t
Q Ds 0 . (17)
D:
The material derivative of ¢ is given by (see Gatski and Jongen, 2000 for details)
D¢ 1 DS DSy
_r — . 1
Dt {5?} [S“ TR ] (18)

In this study we used both methods and found that they provided the same results in the flows considered
herein. The second method is numerically more efficient since it does not need any algorithm to compute the
eigenvectors.

3. Kinematic results

We consider in this section the two-dimensional stream of a Newtonian viscous fluid past a circular cylinder
of unit radius A = 1. The computational domain (Fig. 1) extends 15 cylinder diameters upstream, 30 diameters
downstream, and 15 diameters on each side of the cylinder. The numerical results presented here are obtained
from solutions of the Navier-Stokes equations written in general orthogonal coordinates (Pope, 1978)and using
a finite volume discretization. These equations use physical orthogonal coordinates and physical contravariant
velocities. The method is second-order accurate in space using a staggered grid, with the pressure at the center
of the control volumes and the velocities at the center of the faces. The orthogonal grid was generated from the
streamlines and lines of equal potential of the inviscid flow past the cylinder. This results in the 200 x 100 body-
fitted structured grid presented in Fig. 1. For the advection terms a quadratic upstream interpolation scheme
(QUICK) was used, whereas a centered difference scheme was employed for diffusion. The time discretization
is semi-implicit resulting in a Poisson equation for the pressure (see Mompean and Deville, 1997 for details).
Full details about the numerical procedure can be found in Thais et al., 2002.

On the cylinder’s surface, non-slip impermeable boundary conditions are used. At the entrance of the flow
domain, a uniform unit velocity field Uy = 1 in the horizontal direction z is imposed. At the far-field outlet of
the flow domain a zero pressure boundary condition is imposed. In the spanwise direction z, symmetry boundary
conditions are imposed. For the present simulation, the Reynolds number R, = 2AU,/v was set to 20, which
is well below the admitted value for the primary 2D-instability (Williamson, 1996). Figure 1 displays contour
lines of the stream function in the near wake of the cylinder. For R, = 20, the flow is confirmed to be steady
and symmetric with respect to z = 0, with the appearance of two recirculation vortices. The reattachment
length L 4 may be defined as the distance along the x axis, measured from the trailing edge of the cylinder, at



which the horizontal = velocity component changes sign from negative to positive. We find L4 = 1.9 in fairly
good agreement with data from other sources (Braza et al., 1986).

The contours of the 12—component of the angular velocity €2, made dimensionless with 24 /U, are presented
in Fig .2. The field is anti-symmetric with respect to the axis z = 0, we shall comment the results for the upper
part of the flow domain z > 0 . The maximum of (29 is found in the shear layer near the cylinder at position
(x = —0.5,z ~ 1). We notice that the minimum of Q2 (negative values) is in the immediate vicinity of the
maximum. Also, 297 is significantly negative in a large region extending upstream and downstream of the
location of the minimum.
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Figure 1: Zoom around circular cylinder of the body-fitted orthogonal mesh with 200 x 100 cells and definition
of sections Cy, Cy, Cs, Cy (left); Streamlines of steady flow past a circular cylinder, R, = 20 (right).

Figure 2 shows the different regions of the flow past the cylinder using the classifier D. The field of D is
symmetric with respect to z = 0, we shall comment the results for the upper part of the flow domain z > 0.
Three limiting types of flow are identified. Two regions of extension, for which D ~ 1, are observed near the
symmetry axis z = 0. The first one is upstream of the cylinder and extends up to the "stagnation point"; the
second region of extension starts downstream of the recirculation vortices (z > 2).
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Figure 2: Angular velocity of the eigenvectors of the rate-of-deformation tensor (left) and contours of the
objective D flow-type classifier (right) ; steady flow past a circular cylinder, R. = 20.

As expected, a shear layer, for which D — 0, is found to develop on each side of the cylinder. The shear
layer zone starts from the point where Q31 is maximum (see Fig. 2) and extends far downstream of the cylinder.
It should be stressed that we do not identify a zone of uniform shear, for which D = 0. There are two regions
where the values of D become negative and gets close to —1: (a) A spot around (z = 1.2,z = 0.5) is observed
corresponding to a rigid body rotation inside the recirculation vortex, (b) A spot around (z = 1.8,z = 0)



corresponding to a plug flow in-between the two recirculation vortices. Away from the cylinder, the flow is
uniform, the principal directions of S are not defined and R cannot be evaluated. The value of D has been
forced numerically towards —1 in this region.

Four sections C;, C3, C3 and C4; were chosen to examine the difference between W and the Euclidean
objective vorticity tensor W, made dimensionless with 2A4/Uj (see Fig. 1). Section C; is a cross-section located
at x = —2. Section C5 and C3 are downstream of the cylinder. Cs is located at x = 1.6 and crosses the two
recirculation vortices, and C3 is part of the symmetry axis z = 0. The fourth section, C4, crosses the spot of
maximum in 9. Figure 3 displays the profiles of W5; and Wo1 along these sections.
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Figure 3: Profiles of Wy, (A) and Wy; (0) along sections Oy, Cy, C3 and Cj; steady flow past a circular
cylinder, R, = 20.

In section Cy (Fig. 3a) the effects of angular velocity of the principal direction of S are most significant near
z = 2. Away from the cylinder W5, and Wy; tend towards the same value. In section Co (Fig. 3b), we note
that in the recirculation vortices (|2| < 1) there is no difference between Ws; and Wa;. The largest discrepancy
is obtained around z ~ 3 crossing the shear layer. In section C3 (Fig. 3c), the magnitude of the two vorticity
components are seen to be very small, of order 10°. This result is expected since section C3 is along the
symmetry axis z = 0. Section Cy (Fig. 3d) exhibits the largest difference between Wy; and Wy since it crosses
the spot of maximum ()91 near z = 1.5.

4. Consequences for algebraic stress models

The differences between the non-objective vorticity tensor W and the Euclidean objective vorticity tensor
W must induce some consequences in algebraic constitutive laws which include one or the other of these two
tensors. In this section, the consequences of taking into account or neglecting MFI are quantified for a simple
algebraic stress model applied to the flow past a circular cylinder.

4.1. Algebraic stress model

The derivation of algebraic stress models usually involves polynomial expansions of a traceless symmetric
stress tensor. This technique was first proposed by Pope, 1975 for the anisotropy tensor in the framework of
turbulence closure. A similar procedure can be used for modelling extra-stresses of viscoelastic liquids. In this
context, denoting by 7 the polymeric part of the extra-stress tensor, a traceless symmetric extra-stress tensor
is defined as

D=7 {r)I (19)



For two-dimensional (2-D) flows it is expanded according to
3
r=3 6. T, (20)
n=1

where the three-term tensor base (T}, T(2), T(3)) must include symmetric traceless tensors, and where the
coefficients (3, are scalar functions. A non-objective algebraic stress model for 2-D flows was derived by Mompean
et al., 1998 which uses

1
™ =8, T®=sw-ws, T® =82_ 5{52}1 (21)

as the tensor base. A similar Euclidean objective algebraic stress model was later proposed by Mompean et al.,
2003 in which the second base tensor T(?) = SW — WS, i.e. the non-objective vorticity tensor W was replaced
by the Euclidean objective vorticity tensor W. In both the afore mentioned models the scalar coefficients /3,
were calculated as functions of the scalar invariants of T', S and W (or W).

For the purpose of the present study, we shall use a simpler model (Debbaut, 2003) which assumes constant
coefficients given by 81 = 2n, B2 = 2nA, B3 = 4n)\, where 7 is the polymeric viscosity and A the relaxation
time of the viscoelastic fluid. These coefficients were found by requiring the algebraic model to reproduce the
uniform shear stress properties of the Oldroyd-B model. The non-objective version of the present model under
consideration will therefore assume a traceless stress

T'=21S + 29\ (SW — WS) + 4n) (82 — %{32}1) (22)

In this expression we can identify three contributions. The first term 27 S is a purely viscous contribution; the
second one 2n\ (SW — WS) includes the vorticity tensor and will be named hereafter rotational contribution;
and the third one 47\ (S? — 1{S?}I) will be named the quadratic contribution.

The Euclidean objective version of the same model is simply obtained upon replacing W by W in Eq. (22)
which gives

_ — 1
T =2nS+2n\ (SW — WS) + 4nA <s2 - 5{52}1) (23)
The difference between the Euclidean objective and non-objective laws rests on the sole rotational contri-

bution. For the present study, a given flow kinematics was used to evaluate the extra stresses in Eq. (22) and
(23), there is no coupling between the constitutive laws and the flow dynamics.
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Figure 4: Cross profiles along section Cs of: objective (A) and non-objective () extra-stresses for 3 Deborah
numbers D, = 0.1 (top), D. = 1 (middle), D, = 10 (bottom); 11 — component (left), 21 — component (right);
steady flow past a circular cylinder, R, = 20.



4.2. Results for the cylinder

Profiles of extra-stresses are plotted along section C5 in Fig. 4, and along section Cy in Fig. 5. Section Cy
is downstream of the cylinder crossing the two recirculation vortices. Section Cy crosses the region where (9
is maximum (see Fig. 2). The results will be presented for 3 increasing Deborah numbers De = AUy /2 A, based
on the downstream average velocity Uy and the cylinder diameter 2 A, namely De = 0.1, 1 and 10 from top to
bottom in Fig. 4 and 5.
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Figure 5: Cross profiles along section Cy of: objective (A) and non-objective () extra-stresses for 3 Deborah
numbers D, = 0.1 (top), D. = 1 (middle), D, = 10 (bottom); 11 — component (left), 21 — component (right);
steady flow past a circular cylinder, R, = 20.

We observe in these figures that the role of MFI increases with increasing Deborah number, yet the discrep-
ancy between the Euclidean objective and non-objective constitutive laws remains small to moderate for the
section (C2). A noticeable result seen in Fig. 4 is that there is no difference between the Euclidean objective
and non-objective extra-stresses in the region crossing the recirculation vortices, irrespective of the Deborah
number. For this section (C3) the MFI could be reasonably ignored. In section C, (Fig. 5), the role of MFT is
significantly more pronounced than observed in the previous section. In particular, it should be noticed that
the Euclidean objective and non-objective extra-stresses can have a difference of one order of magnitude close
to the region where 297 is maximum (z = 1.5).

5. Conclusions

This paper presents a methodology to identify regions of a flow field where the principle of material frame-
indifference (MFI) should be taken into account or could be reasonably discarded. The method consists of
computing an Euclidean objective vorticity tensor W defined as the difference between the usual vorticity
tensor W and the angular velocity € of the eigenvectors of the rate-of-deformation tensor. The role of MFI
is likely to appear in regions of a flow where €2 is significant in magnitude with respect to W. This method
was applied to a uniform stream past a circular cylinder. This configuration exhibits complex flow kinematics,
including shear layers, extension and recirculation zones.

The first result of this study is that € is negligible in regions of the flow characterized by uniform shear
or extension and in the recirculation zones. In contrast, obtaining significant values of €2 requires a transition
between regions having different kinematics and a significant velocity magnitude. This situation was observed
in the shear layer of the flow past a cylinder (section C4). The latter result is in agreement with Eq. (18),
in which it can be seen that the angular velocity 2 is proportional to deformation rates and to the velocity
components appearing in the material derivatives. The second important result is the influence of this kinematic
result upon MFI. This was checked upon comparing the stresses obtained by use of given Euclidean objective
(Eq. 23) and non-objective (Eq. 22) constitutive laws. As expected the overall effect of MFT increases with the
Deborah number. Quantitatively, for De = 0.1 in all flow configurations we found small departures between



Euclidean objective and non-objective stresses. For De = 10 in the most critical region, the Euclidean objective
and non-objective stresses can differ by one order of magnitude (see bottom of Fig. 5). On the other hand,
regions where the magnitude of € is small will in any event never be sensitive to MFI. In such regions MFI
can be safely ignored. When interpreting these results it should be borne in mind that there is no dynamical
coupling between the flow and the constitutive laws. This should have little impact at small Deborah numbers,
but future work is necessary to check the influence of MFI when coupling Euclidean objective stress models at
high Deborah numbers.
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