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Abstract. The analysis of two-dimensional laminar flow in the entrance region of irregular ducts is made by the application of the 
so-called Generalized Integral Transform Technique (GITT) in the solution of the Navier-Stokes equations. The streamfunction-only 
formulation is adopted, where a splitting-up procedure is applied with a general filter that adapts to the irregular contour. The case 
of a wavy wall duct is more closely analyzed. Computation of results for streamfunction, vorticity and velocity fields are performed, 
and comparisons with those in the literature are made in order to validate the computational code developed. In addition, results for 
the product of the friction factor-Reynolds number are also calculated and compared with available ones in the literature for 
different Reynolds numbers and amplitude of the duct. 
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1. Introduction 
 

The fluid flow is found in several applications related to the project, manufacture and operation of industrial 
products. Among them, involving mainly, incompressible fluids, we have the flow of liquids in plants of chemical 
processing, air flow in heating and ventilation of rooms and cooling of electronic equipment. In these applications there 
is the need of the knowledge of certain physical parameters, as the friction factors. 

The flow and heat transfer phenomena occurring in wavy wall duct have been studied in different engineering 
sectors. Corrugated surfaces are for example, utilized in compact heat exchangers (Kays, 1984). Most of studies 
performed on the fluid dynamic and thermal phenomena occurring in corrugated wall ducts consider corrugations 
having a periodical pattern which is described by simple functions such as rectangular, triangular or sinusoidal ones. 
However, due to the variety of thermal and fluid dynamic characteristics described in the literature under different 
conditions, the study of more complex corrugation profiles can be useful to better evaluate the convenience of assigning 
to the corrugated duct walls rather than flat profiles. 

Some experimental and theoretical studies available in the literature of fluids dynamic and thermal phenomena 
dealing with ducts of wavy wall can be seen in Goldstein and Sparrow (1977), Asako et al. (1988), Sunden and 
Trollheden (1989), Xiao et al. (1989) and Wang and Chen (2002). 

In this context, the present work is motivated by the application of the Generalized Integral Transform Technique 
(GITT) in the solution of the Navier-Stokes equations in hydrodynamic developing flow in a wavy wall duct. A general 
formulation in terms of streamfunction is adopted, such as that proposed by Pérez Guerrero (1995) and Pérez Guerrero 
et al. (2000). In this formulation the streamfunction is separated in two parts, where one of them represents a generic 
filter, which adapts to the irregular boundary of the general duct. A wavy wall duct is more closely studied, where 
computations for the streamfunction, vorticity and velocity fields are performed, as well as for the product of the 
friction factor-Reynolds number, with different values of the governing parameters of the flow, such as the Reynolds 
number and the amplitude of the wavy surface. 
 
2. Mathematical formulation 
 

We consider two-dimensional steady laminar flow of an incompressible Newtonian fluid in the inlet region of a 
duct of irregular geometry. Figure (1) shows the schematic representation of the problem. 
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Figure 1. Definition of the general irregular geometry for the problem and coordinates system. 
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The flow is governed by the continuity and Navier-Stokes equations. Adopting the streamfunction formulation, the 
problem is written as 

 
3 3 3 3 4 4 4
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where the boundary conditions are the non-slip and impermeability at the duct walls 

 
1
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∂ψ −
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∂ψ
ψ =

∂n
=
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where n, k1 and k2 represent the unit normal vector in the outward direction of the duct wall and the streamfunction 
values at the walls, respectively. The constant Q represents the volumetric flow for unit of length and is determined as 
(Pérez Guerrero, 1995) 

 

2 2(0, y ) k Q kψ = = +  (1f) 
 
In above equations the definition of streamfunction was introduced according to 
 

u = 
y

∂ψ
∂

;   v = - 
x

∂ψ
∂

 (2a,b) 

 
These definitions allow automatically to satisfy the continuity equation. The dimensionless groups employed in 

Eqs. (1) are defined as 
 

* * * * * * 2
1 1 2 2 0 0 0 0x x /b;  y y /b;  y (x) y (x )/b;  y (x) y (x )/b;  u = u * /u ;  v = v* /u ;  p = p* / u ;  Re bu /= = = = ρ = ν  (3a-h) 

 
where b represents the half distance between the walls at the duct inlet. 

 
3. Solution methodology 

 
In the solution of Eqs. (1) by using the GITT approach, it is convenient to define a filter in order to homogenize the 

boundary conditions in the y direction, which later will be the one chosen for the eigenvalue problem. Therefore, the 
filter is written as 

 
(x, y) (x, y) F(x, y)ψ = φ +  (4) 

 
where φ(x,y) represents the unknown potential to be determinate, and F(x,y) is the filter, which has the same values that 
ψ(x,y) at the duct walls. The function F(x,y) is not a particular solution of ψ(x,y) (Pérez Guerrero, 1995). Therefore, 
introducing Eq. (4) into Eqs. (1), results 
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1 1 1(x, y ) k F(x, y )φ = − − ;    1(x,-y )
=0∂φ
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2 2 2(x, y ) k F(x, y )φ = − ;   2(x,y )
=0∂φ

∂n
 (5d,e) 
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Through the methodology presented by Pérez Guerrero (1995) and Pérez Guerrero et al. (2000), the filter F(x,y) 
should be in a such way that reproduces the value of the streamfunction at the duct walls along the length. This function 
can be built by considering that at each position along the duct a velocity profile is fully developed, which adapts to the 
irregularity of the duct. 

In order to introduce this filter, a relationship between the coordinates system (x,y) and a new transformed system 
(η,x) is given as 

 

3y y (x)η = − ;   [ ]0 1 2
1y (x) y (x) y (x)
2

= + ;   [3 2 1
1y (x) y (x) y (x)
2

= − ]  (6a-c) 

 
or in terms of the original coordinates 

 
3

3 3
1

0 0

y y y y3 1F(x, y) Q k
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⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

Q⎥ +  (7) 

 
where y3 represents the distance between the axes y and η and y belongs to interval [-y1(x), y2(x)], and  
η ∈ [-y0(x), y0(x)]. It is defined like this a new variable ξ, which will allow to determine the coefficients of the integral 
transformation. Therefore the domain ξ ∈ [-1,1] is defined as 

 
3

0 0

y y
y y

−η
ξ = =  (8) 

 
Thus, the filter can be rewritten in the form 
 

3

1
3 QF( ) k
4 3 2

⎡ ⎤ξ
ξ = ξ − + +⎢ ⎥

⎣ ⎦
 (9) 

 
In the light of applying the GITT approach in the solution of the PDE system given by Eqs. (5), due to 

homogeneous characteristics of the boundary conditions in the y direction, it is more appropriate to choose this 
direction for the process of integral transformation. By considering the relation given by Eq. (8), the auxiliary 
eigenvalue problem is taken as 
 

4
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Problem (10) is analytically solved, to furnish 
 

i i

i i
i

i i

i i
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where the eigenvalue βi is defined as 
 

i i yβ = µ 0

∫  i 1, 2,3,...=

 (12) 
 

The normalization integral is defined as 
 

1
2

i 0 i
1

N y Y ( )d
−

= ξ ξ ,    (13) 

which is computed as 
 

i 0N (x) 2y (x) N(x) N= = =  (14) 
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The eigenfunctions satisfy the following orthogonality property: 
 

2

1

y

i j
y

0,   

0,    for   i j
Y Y dy

2y for i j
−

⎧ ≠
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⎪ =⎩

∫  (15a,b) 

 

The eigenvalue problem defined by Eqs. (10) allow the definition of the following integral transform pair: 
 

2

1

y

i i
y

1(x) Y (x, y) (x, y)dy
N(x) −

φ = φ∫ ,   transform (16) 

 

i i
i 1

(x, y) Y (x, y) (x)
∞

=

φ = φ∑ ,   inverse (17) 

 

We can now to accomplish the transformation of the original partial differential system given by Eqs. (5). For this 
purpose, Eq. (5a) is multiplied by Yi and is then integrated over the domain [-y1(x), y2(x)] in y, after that the inverse 
formula given by Eq. (17) is employed, resulting in the following coupled ordinary differential system for the 
calculation of the transformed potentials iφ : 
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where the coefficients that depend on x are calculated from 
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Analyzing the ODE system given by Eq. (18) we observe that the integral coefficients depend on the axial position 

x. This would imply in a high computational cost if the coefficients would be numerically calculated, once they need to 
be reevaluated along the solution procedure for the ordinary differential equation system. A strategy to overcome this is 
analytically to calculate them through the software of symbolic computation Mathematica (2000). The calculation 
procedure is made in such a way that the same ones are calculated only once time and stored, after that they are 
multiplied by functions that take into account the dependence of the irregular domain each time that the differential 
system is solved. 

It is necessary to truncate the infinite series in a number of terms sufficiently high to guarantee the relative error for 
obtaining the original potentials. Therefore, the ordinary differential equation system can be rewritten as 
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where NTV is the order of truncation of the infinite series. 

Therefore, to solve the system by efficient numerical algorithms for boundary value problems, such as the 
subroutine DBVPFD from the IMSL Library (1991), which offers an automatic adaptive scheme for local error control 
of the results for the transformed potentials, it is necessary rewritten the system as a first order one, in the form 
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Therefore by making use of Eqs. (41), the system can be rewritten as 
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where , which is related to c a parameter of scale compression for the case of infinite duct, and 0 1 . cx1 e−τ = − ≤ τ ≤
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In the analysis of the irregular duct, the boundary conditions in the x direction necessary for the solution of the 
ordinary differential equation system, Eq. (43), are given in two ways: it is considered a truncated duct and the version 
for considering the infinite duct. At the duct entrance, for the two versions it is considered that u = 0 and v = 0. At the 
duct outlet, each case is separately analyzed. In the version of the truncated duct, we consider that ∂ω/∂x = 0 and v = 0, 
where ω is the vorticity. For the infinite duct, u = u∞(y) and v = 0, where u∞(y) is the velocity profile for the fully 
developed flow. These boundary conditions in terms of streamfunction are written as: 

- For the truncated duct, in terms of the vector solution χ, we have 
 

i NTV i(0) 0,    (0) 0+= =χ χ ,   
NTV
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out j 1
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⎡ ⎤
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⎢ ⎥
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where 
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- For the infinite duct, in terms of the vector solution χ, we have 
 

i NTV i(0) 0,    (0) 0+= =χ χ ,    (46a-d) i NTV i(1) 0,    (1) 0+=χ χ
 
 

4. Results and discussion 
 
We analyze the wavy wall duct whose geometry is shown in Fig (2). The functions that describe this geometry in 

dimensionless terms are given as 
 

1 2y (x) 1 f (x);    y (x) 1 f (x)= + = + ;    (47a-c) [f (x) sin (x 3)= α ⋅ π −
 
where α = a*/b is the dimensionless amplitude of the wavy surface, and the value of the axial coordinate at the duct 
outlet  xout was taken as xout = 20. In the present analysis, the interval used for the axial coordinate x was 3 ≤ x ≤ 15, 
which corresponds to six complete sinusoidal waves. 

 

 
 

Figure 2. Wavy wall duct analyzed. 
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Tables (1) and (2) shows the convergence of the streamfunction along the line y = 0.5 for Re = 10 and α = 0.1 and 
Re = 100 and α = 0.2, respectively. An excellent convergence is observed for low truncation orders NTV = 6 at the duct 
inlet for Re = 10 and α = 0.1, satisfying the requested tolerance. For the case of Re = 100 and α = 0.2, it is observed 
that the convergence with NTV = 18. The results obtained with NTV = 30 shown that the original potential remained 
unaffected, therefore guaranteed the precision in the convergence analysis. 

 
Table 1. Convergence behavior of the streamfunction at y = 0.5 for Re = 10 and α = 0.1. 

Infinite Duct 
NTV 

x 6 10 14 18 22 26 30 
0 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 
3 0.7117 0.7117 0.7117 0.7117 0.7117 0.7117 0.7117 
5 0.7092 0.7092 0.7092 0.7092 0.7092 0.7092 0.7092 
7 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 
9 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 

11 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 
13 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 
15 0.6861 0.6861 0.6861 0.6861 0.6861 0.6861 0.6861 
20 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 

Truncated Duct 
NTV 

x 6 10 14 18 22 26 30 
0 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 
3 0.7117 0.7117 0.7117 0.7117 0.7117 0.7117 0.7117 
5 0.7092 0.7092 0.7092 0.7092 0.7092 0.7092 0.7092 
7 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 
9 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 

11 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 
13 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 
15 0.6861 0.6861 0.6861 0.6861 0.6861 0.6861 0.6861 
20 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 

 
 
 

Table 2. Convergence behavior of the streamfunction at y = 0.5 for Re = 100 and α = 0.2. 
Infinite Duct 

NTV 
x 6 10 14 18 22 26 30 
0 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 
3 0.7321 0.7326 0.7327 0.7327 0.7327 0.7327 0.7327 
5 0.7312 0.7380 0.7390 0.7391 0.7391 0.7391 0.7391 
7 0.7470 0.7523 0.7531 0.7532 0.7532 0.7532 0.7532 
9 0.7539 0.7588 0.7595 0.7595 0.7593 0.7593 0.7593 

11 0.7577 0.7624 0.7630 0.7631 0.7631 0.7631 0.7631 
13 0.7599 0.7646 0.7652 0.7652 0.7652 0.7652 0.7652 
15 0.7167 0.7204 0.7211 0.7212 0.7212 0.7212 0.7212 
20 0.7147 0.7157 0.7159 0.7159 0.7159 0.7159 0.7159 

Truncated Duct 
NTV 

x 6 10 14 18 22 26 30 
0 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 
3 0.7322 0.7326 0.7327 0.7327 0.7327 0.7327 0.7327 
5 0.7312 0.7380 0.7390 0.7391 0.7391 0.73912 0.7391 
7 0.7470 0.7523 0.7531 0.7532 0.7532 0.7532 0.7532 
9 0.7539 0.7588 0.7595 0.7595 0.7595 0.7595 0.7595 

11 0.7577 0.7624 0.7630 0.7631 0.7631 0.7631 0.7631 
13 0.7599 0.7645 0.7652 0.7652 0.7652 0.7652 0.7652 
15 0.7167 0.7204 0.7211 0.7212 0.7212 0.7212 0.7212 
20 0.7135 0.7157 0.7159 0.7159 0.7159 0.7159 0.7159 
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Figure (3) shows the streamlines for Re = 10 and α = 0.1. It is observed a strong influence of the amplitude. For 
low amplitude, it is not verified the appearance of recirculations near the duct wall, due to low convective effects in 
relation to diffusive ones attached to the Reynolds number. In Fig. (4), it is verified the appearance of this recirculation 
pattern near the duct wall for Re = 100 and α = 0.2, where it is evidenced the influence of the amplitude, consequently 
due to higher convective effects associated with higher Reynolds number. 
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Figure 3. Streamlines for Re = 10 and α = 0.1. 
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Figure 4. Streamlines for Re = 100 and α = 0.2. 

 
Figure (5) and (6) show a comparison of the present results for the product of the friction factor-Reynolds number 

against those of Wang and Chen (2002), where it is verified an excellent agreement among the two sets of results. Also, 
it is shown the influence of the Reynolds number and of the amplitude in this parameter. For higher Reynolds number, 
i.e., higher convective effects, the product fRe tends to diminish, while the amplitude makes an increasing in the 
product fRe, due mainly the appearance of recirculation zones in the flow. 
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Figure 5. Comparison of the product of the friction factor-Reynolds number for Re = 300 and α = 0.2. 
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Figure 6. Comparison of the product of the friction factor-Reynolds number for Re = 500 and α = 0.1. 
 
Figure (7) illustrates vorticity wall for different Reynolds numbers and different values of amplitudes. It is observed 

a higher vorticity with increasing Reynolds number and increasing amplitudes. It is still verified that for low Reynolds 
number (Re = 10 and α = 0.3), the values of the vorticity are near of vorticity values for Re = 10 and α = 0.1. 
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Figure 7. Vorticity at the duct wall for Re = 10 and different values of amplitude. 
 
In Figs (8) to (10), it is observed the development of longitudinal velocity profile for different Reynolds number 

and different amplitudes values in the wavy wall duct. The evidence more markedly in these figures are the distortions 
of the profiles for higher Reynolds number and values of amplitude. This behavior was expected, since for these 
situations the convective effects are more markedly. 
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Figure 8. Development of the longitudinal velocity profile for Re = 10 and α = 0.2. 
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Figure 9. Development of the longitudinal velocity profile for Re = 100 and α = 0.3. 
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Figure 10. Development of the longitudinal velocity profile for Re = 300 and α = 0.2. 
 
 

5. Conclusions 
 
The results demonstrated the applicability of the Generalized Integral Transform Technique (GITT) as an 

appropriate tool to solve flow problems in irregular ducts involving the Navier-Stokes equations. 
The strong influence of the Reynolds number and of the amplitude of the wavy surface in the results suggests that 

these types of ducts may be employed to intensify heat transfer rates. Therefore, the analysis of energy equation through 
the GITT approach will be the next natural step to elucidate some questions involving this geometric configuration. 
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