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Abstract. In this work a comparison is made between the finite volume and the finite element methods regarding to the solution of
2D transient conduction problems subjected to several types of boundary conditions. The first problem examined is the semi-infinite
medium with heat flux condition on the free surface. This problem is of particular interest for thermal shields based on the ablation
phenomenon. Also, the problem of a slab with convection BC’s on both surfaces is examined in order to compare the performance of
both methods subjected to different BC'’s. A totally implicit scheme is used for the time dependent problem for both methods.
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1. Introduction

A variety of problems occurring in engineering and sciences involve transient behavior in heat transport. In
particular, in accident analysis it is often very important to be able to predict accurately transient temperature fields in
devices, equipments, or even systems, in order to make sure the temperature and heat flux limits will not be surpassed.
Also, in some processes the rate of heating or cooling has to be kept within pre-established limits. In this work, transient
conduction problems with different types of boundary conditions are solved using two methods, finite volume and finite
element schemes, in order to assess their accuracy. This work is inserted in a software platform development project for
the analysis and design of devices, considering several physical phenomena such as electromagnetic wave propagation,
plasma physics, and heat and mass transport (Abe ef al. (2002), Franco et al. (1998), Franco et al. (1999)), and is part of
an effort to validate mathematical and numerical formulations and the corresponding computational implementation.
First, a semi-infinite medium subjected to a uniform heat flux condition on the free surface is analyzed. Then, a slab
with internal heat generation and convection BC’s on both surfaces is solved. The first case is of interest in thermal
shield problems based on the ablation phenomenon, while the second can simulate the behavior of a nuclear fuel
element under accident conditions in which there is a core flooding, for example.

2. Geometry of the Problems

For the case of the semi-infinite medium, the geometry considered was a horizontal slab insulated on three sides
and with an imposed uniform heat flux on the other, as shown in Fig. (1).
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Figure 1 - Semi-Infinite Medium

The length of the slab, L, is made as big as necessary such that the side opposed to the heat flux has no or little
influence on the behavior of the thermal field. This length depends on the time span one wishes to analyze. The height,
H , on the other hand, is not important at all, since the applicable boundary conditions on both top and bottom sides are
symmetry conditions. An analytical solution for this problem can be obtained from Holman (1976).

For the case of the heat generating vertical slab with convection BC’s on both sides, a sketch of the geometry
considered is shown in Fig. (2) below. Notice that, in this case, a heat transfer coefficient, % , has to be supplied.
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These two geometries are then used to compare transient results between the finite volume and finite element
schemes. It should be pointed out that, although the programs used are both for 2D geometries, the imposed boundary
conditions for the two geometries reduce the problems to 1D.
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Figure 2 - Heat Generating Vertical Slab
3. Mathematical and Numerical Modeling
Here the two methods, finite volume and finite element, are presented and discussed briefly. For the two cases
presented, the mathematical model is the time dependent energy equation with constant properties for the materials.

This equation can be written as:

or "
pcPE:kVZTW 1)

The boundary conditions applicable can be written as:

T
kg— =q’ for uniform heat flux BC, )
n,_
oT
ka— = h(T =T, ) for the convection BC, and 3)
n|,
oT
ka— =0 for symmetry BC. 4
n|,

In Egs. (2) to (4) s~ represents approaching the boundary from the interior and »n the normal direction to the
boundary pointing outwards. Here, p is the material density, ¢, is the specific heat, & is the thermal conductivity, ¢"

is the volumetric heat generation rate, ¢! is the heat flux on a surface, 7, is the surface temperature and 7 is the

K

ambient temperature.
3.1.The finite volume method

The finite volume method is based on the volume integral of the conservation equations over a control volume (CV,
the cells of the discretized domain). The values of the quantities on the control volume’s borders necessary to carry out
this integration are obtained through some interpolation scheme. This procedure yields a set of algebraic equations for
the variable of interest, which can be solved directly or by some sort of iterative procedure. Figure (3) shows a typical
CV used in the discretization process. The CV shown is for a non-orthogonal structured mesh, although the meshes
used in the solution of the proposed problems are orthogonal structured ones. Integrating Eq. (1) over this control
volume one obtains:

j(pcp %]dV - j(kvzr)dm [qav )
4

s o

which can also be written as:

j[pcp aa—];jdV = [(evT)ds + [q"dv (6)
v r 4
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Figure 3 - Control Volume

where I' is the CV boundary.

The left hand side and the second term on the right hand side of Eq. (6) are calculated using the variable values at
the center of the control volume. The first term on the right hand side gives the heat fluxes at the CV faces.

The algebraic equation obtained with the application of the finite volume method to a CV has the following form:

I,+1 +1, +1, =Sw @)

where ¢ is the variable of interest, / represent the fluxes of ¢ through the CV faces (east, west, north and south) and

S is the source term inside the CV. The interpolation scheme used in this work is the central differencing scheme
(CDS), which is linear. In the numerical procedure the system of equations obtained applying Eq. (7) to all the CV’s in
the domain is solved until the sum of the residues, i.e., the difference between the right hand side and left hand side of
Eq. (7), reaches a value lower than 107, so the solution is considered converged. The time scheme utilized is the totally
implicit scheme.

3.2. The finite element method

The finite element method (FEM) is based on the minimization of a functional whose solution is equivalent to the
original differential equation. An approximated solution 7 for the differential equation (1) can be obtained by applying
the Weighted Residual Method (WRM) or by applying variational principles. In the WRM, the integral of the residues,
I, over the entire domain Q is imposed equal to zero:

I=[ WyRydQ+ [ WRdr + [ W,R,dl =0 ®)
where
R, = kV2T—pcpa—T+q'" (€)
ot
R =T -T, (10)
R2:gn_g (11)

The time independent weighting functions, W,, W, and W, , are chosen arbitrarily, but they must be sufficiently
regular in order to obtain finite integrals. The residue is minimized in a global sense.

The domain Q is discretized in sub-domains of simple geometry named finite elements and Eq. (8) is supposed to
be valid for each element. After some algebraic manipulation, the residue equation for each element can be written as
follows:

; or"
J.Qf VWO(s) . (kVT(f))dQ ¥ -[Q‘: Wo(f)p c, ng _ .[95 W/O("f)q () dQ_J.FZ‘f Wo(f)g(é) dr=0 (12)
Inside each element, &, the state variable is expanded by using a finite set of linearly independent base functions
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T(f)(’jj):ZNi(f)(;})];(f)) (13)

i=1

where T,') is the temperature computed in the nodal point i and r, is the number of nodal points of the element.

These base functions depend on both the family and the approximation order of the finite elements adopted. The
base functions present the following property:

NEOF) =6, (14)

and obey the unit partition condition:

ng

SNG =1 (15)
i=1

In order to solve Eq. (12), the weighting functions are chosen by using the Galerkin technique, i.e., the weighting
functions coincide with the base functions:

WO = NE. (16)

The final equation for each element expressed in a matrix form is:

(Lslp D) (ry (e ) = (ry loy -

El

where the elements of the matrices are:

S =[oe VN, - (kVN)) T, d (18)
D; = jff NN, h,T,dl (19)
Ci=lpe N, N, pc,dQ (20)
B = N;q dQ @)
G, = jrg N, g, dl"+jr§ N;h T, dU 22)

The index & in the integrals was omitted.

3.3. Time discretization scheme

The time discretization is accomplished by the following scheme (Zienkiewics and Taylor (1991)):

oT, oT,
Tn+1:Tn+At|:(1_®) 81‘" +®6_I;+1:|, OS@SI (23)

where © is an adimensional value. By selecting specific values for ® it is possible to recover several different time
schemes, from the Euler explicit method (® =0) to a totally implicit one (® =1). Substituting the first derivative in time
of T, in Eq. (17) results the formulation used in this work:

(G)(S+D)+£)T(t+At):[—(l—®) (S+D)+£]T(t) +
At At

(1-©)P(1) + OP(t+ A1)+ ( (1-0) G(t) + OG(t + Ar))

24
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4. Results and Discussion

In this work two time dependent problems were solved, using both methods described in the previous section, in
order to compare them. For both methods care was taken so that the number of ‘volumes’ obtained in the meshing
process was about the same. The results obtained are summarized below.

4.1. Semi-Infinite Medium

For the semi-infinite medium subjected to a uniform heat flux at the free surface, the results of the two methods are
compared to the analytical solution at several time instants. The medium properties as well as the initial and boundary
conditions utilized are shown in Tab (1). Tables (2), (3) and (4) summarize the results obtained for the surface
temperature and for 2.5 cm and 10 cm deep temperatures, together with the relative errors with respect to the analytical
solution.

Table 1 - Semi-infinite medium properties and BC’s.

Physical Model
Material: Thermal conductivity k£ =45 W/(m °C).
Thermal diffusivity & = 1.4 10° m%/s
Initial condition: uniform temperature T, =35°C

Boundary Condition: imposed uniform heat flux ¢” = 3.2 x10° W/m’

Table 2 - Surface temperature for several time instants for the Semi-infinite medium and associated errors.

Analytical FEM FEM FVM error(%) error(%) error(%)
t(s) . L=10cm L=50cm FEM FEM FVM
solution L =50cm
L=10cm L=50cm L=50cm
15 151.279 150.263 150.265 154.22 0.671611 0.6702897 1.944086
30 199.4 198.723 198.725 201.53 0.3395119 0.3385094 1.068207
45 236.4 235.813 235.815 238.11 0.2483039 0.2474583 0.7233531
60 267.547 267.049 267.05 269.05 0.1861302 0.1857652 0.561767
75 295 294.555 294.55 296.34 0.1508499 0.1525465 0.4542361
100 335.23 334.872 334.838 336.39 0.1067929 0.1169341 0.3460322
200 459.59 461.864 459.313 460.42 0.4947926  6.027286E-2  0.1805995
300 555.02 568.331 554.789 555.7 2.398287 4.162338E-2  0.1225168
400 635.46 669.638 635.266 636.06 5.378462 3.053391E-2 9.441595E-2
500 706.33 769.637 706.162 706.88 8.962809 2.378913E-2  7.786556E-2

Table 3 - Temperature at 2.5 cm from the surface for several time instants for the Semi-infinite medium and associated

eITorS.

Analytical FEM FEM FVM error(%) error(%) error(%)

t(s) solution L =10cm L =50cm L =50cm FEM FEM FVM

L =10cm L =50cm L =50cm

15 50.695 50.911 50.882 52.789 0.4260767 0.3688732 4.130589
30 79.3 79.204 79.1703 81.123 0.1210601 0.1635557 2.298862
45 106.606 106.4 106.37 108.18 0.1932361 0.2209975 1.476462
60 131.73 131.51 131.479 133.15 0.1670092 0.1905351 1.077961
75 154.099 154.757 154.715 156.27 0.4270013 0.3998705 1.408838
100 190.35 190.216 190.81 191.49 7.039805E-2  0.2416556 0.5988964
200 305.22 309.049 305.06 306.12 1.254508 0.0524224 0.2948673
300 396.46 413.49 396.267 397.17 4.295515 0.0486791 0.1790904
400  474.36 514.283 474.185 474.98 8.416189 3.688924E-2 0.1307078

500  543.45 614.152 543.33 544.44 13.00984 2.208025E-2  7.786556E-2
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Table 4 - Temperature at 10,0 cm from the surface for several time instants for the Semi-infinite medium and associated

errors.
. FEM FEM FVM error(%) error(%) error(%)
t(s) A;:)?gfgf‘l L=10cm L =50cm L =50cm FEM FEM FVM
L =10cm L =50cm L =50cm
15 34.997 35.0008 35.004 35.001 1.085647E-2 2.000163E-2  1.142327E-2
30 35.028 35.0974 35.0491 35.062 0.1981295  6.023493E-2  9.706634E-2
45 35.36 35.861 35.4319 35.487 1.416854 0.2033354 0.3591598
60 36.403 38.035 36.5202 36.637 4.483147 0.3219486 0.6428074
75 38.35 41.974 38.4909 38.674 9.449806 0.3674046 0.8448535
100 43.54 52.3739 43.6926 43.794 20.28916 0.3504808 0.5833666
200 79.83 124.821 79.9111 80.397 56.35851 0.1015915 0.710261
300 125.99 217.467 126.05 126.6 72.60655 4.762695E-2  0.4841659
400 173.72 315.271 174.104 174.67 81.48227 0.2210469 0.5468553
500  221.68 414.383 221.642 222.93 86.92846 1.713929E-2  0.5638759

The Tables illustrate the effect of the domain truncation ( L length) on the results for the FE computation. The
same effect is obtained for the FVM. For a compatible choice of the domain truncation, both methods present adequate
precision from an engineering point of view. The presented results were obtained for a time step equal to 1 s. As can be
also noticed from the Tables, the FVM consistently overestimates the analytical results for the set of numerical
parameters used, such as time step, number of volumes and tolerance.

Fig. (4) illustrates the temperature profile obtained from the analytical solution and the numerical methods for
several time instants. In both cases, the length L is 50 cm.
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Figure 4 - Temperature profile as a function of x for different time instants: (a) from 15 to 75 s and (b) from 100 to
500 s.

As can be noticed, for a time instant up to about 60 s, the temperature at a depth of 10 cm does not change much,
which justify the results obtained for L =10 cm being reasonable up to about 100 s. After that, though, the influence of
the length L on the results is evident.

4.2.Infinite Heat Generating Slab

For the case of the heat generating vertical slab with convection BC’s on both sides, the results of the two methods
are compared to each other at several time instants. The material properties as well as the initial and boundary
conditions utilized are shown in Tab. (5). Tables (6) and (7) summarize the results obtained at t =200 s and t = 1000 s
for two different time steps.
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Table 5 - Material properties and boundary conditions.

Geometry Slab width W =5 cm.
Material: Thermal conductivity k=1 W/(m °C).
Density p = 100 kg/m’

Specific heat: ¢,= 3600 J/kg °C
Source: q" = 1x10° W/m’
Initial condition: uniform temperature 7,=20°C
Boundary Condition:  Convective surfaces: #= 100 W/m*>°C e T, =20 °C.

Table 6 - Computed temperatures for t = 200s.

At=5s At=1s

x(m) FEM FVM Difterence (%) FEM FVM Difference (%)

0 37.4128 37.81691 1.080138 37.5121 37.65425 0.3789467
0.005 45.0833 45.53851 1.009704 45.2291 45.30149 0.1600552
0.01 50.8406 51.34755 0.9971369 51.0253 51.0481 4.468459E-2
0.015 54.8417 55.38994 0.9996715 55.0558 55.04336 2.2594776E-2
0.02 57.1923 57.77633 1.021169 57.4246 57.40042 4.210313E-2
0.025 57.9742 58.575 1.036322 58.2128 58.189 4.08843E-2
0.03 57.1951 57.80934 1.073943 57.4275 57.43301 9.591959E-3
0.035 54.8427 55.45694 1.120001 55.0568 55.10954 9.578869E-2
0.04 50.8397 51.45046 1.201344 51.0244 51.14983 0.2458256
0.045 45.0827 45.68011 1.325147 45.2285 45.44164 0.4712484
0.05 37.4128 38.00062 1.571179 37.5121 37.83631 0.8642841

Table 7 - Computed temperatures for t = 1000 s.

At=5s At=1s

x(m) FEM FVM Difference (%) FEM FVM Difference (%)

0 44.9219 45.17406 0.5613278 44.9269 45.18114 0.5659014
0.005 56.1147 56.2712 0.2788894 56.122 56.28226 0.2855551
0.01 64.8202 64.90586 0.1321546 64.8295 64.91988 0.1394202
0.015 71.0454 71.07997 4.865732E-2 71.0562 71.09598 5.598338E-2
0.02 74.7779 74.79452 2.222157E-2 74.7896 74.81152 2.931809E-2
0.025 76.0321 76.05 2.355083E-2 76.044 76.067 3.02491E-2
0.03 74.7814 74.84641 8.693347E-2 74.7931 74.86341 9.400934E-2
0.035 71.0461 71.18375 0.1937468 71.0568 71.1998 0.2012443
0.04 64.8193 65.06155 0.373729 64.8286 65.07561 0.381019
0.045 56.114 56.47882 0.6501451 56.1213 56.48996 0.6568985
0.05 44.9219 45.43367 1.13924 44.9269 45.44083 1.143928

In Tables (6) and (7) the percent difference between the two methods is calculated based on the FEM results.

Figure (5) shows the temperature profiles obtained by the two methods using time steps of 5s and 1s. It is
expected that a smaller time step yield more accurate results. The biggest differences occur in the beginning of the
simulation, which is illustrated at the time instant = 200 s. In this case, a more detailed analysis shows that when the
time step is reduced from 5 to 1 s the results obtained by FVM decrease while the ones obtained by FEM increase, i.e.,
the methods tend to converge as shown in Fig. (6). It should also be observed that, for this problem a steady state is
reached after enough time is elapsed, so that the differences between the methods will be due to the spatial
discretization only.
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Figure 5 - Temperature profile as a function of x for several time instants: (a) for time step equal to 5 s and (b) for time
step equal to 1 s.
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Figure 6 - The temperature profile at 200 s obtained by the two methods for time steps of 5 and 1 s.
5.Conclusion

The results obtained by applying both the FEM and the FVM to two simple, one-dimensional, transient conduction
problems are presented in this work. The problems were chosen in order to evaluate several details of the methods’
implementation such as the treatment of different boundary conditions and volumetric heat sources. The comparisons
made between the methods showed that, for the type of transients analyzed and the choices of parameters for both
methods, i.e., base functions, interpolation functions, etc., both yield accurate results with a totally implicit time
scheme. As expected, for smaller time steps the methods get closer to one another. For the semi-infinite medium
problem, which is also compared to an analytical solution, the FEM showed slightly better results than the FVM.

The generated documentation serves as a tutorial for potential users of the software platform under development
and gives us confidence to continue the implementation of software modules for the study of additional phenomena,
such as the analysis of convective heat transfer for turbulent incompressible flow.
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