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Abstract. An implicit implementation of the SUPG formulation with shock capturing for 3D inviscid compressible flows in 
conservation variables is presented. A shock capturing formulation, derived initially in entropy variables, was implemented plus a 
freezing technique to avoid residual stagnation and to improve convergence towards steady state. Local time-stepping and 
Jacobian-Free Newton-Krylov metohds are also employed to improve convergence.Classical numerical examples of high speed 
flows governed by the Euler equations, such as, the one-dimensional normal shock and the two-dimensional oblique and reflected 
shocks are presented.  
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1. Introduction  
 

The compressible Euler equations for high speed flows have been extensively studied in the 80s and 90s. One of the 
most used numerical methods is finite elements, which has strong mathematical background, good accuracy and 
handles naturally complex geometries. However, today’s computing power is still insufficient to resolve all the physics 
involved in large-scale problems, even when seeking steady state solutions. The most widely technique used to solve 
steady compressible problems is to start from an initial guess and march in time until steady state is reached. In other 
words, drive steady state solutions with a pseudo-transient analysis. Within the finite element context, such calculations 
become possible after the papers by Tezduyar and Hughes (1982, 83) where stabilized methods were developed. 
Therefore, stabilized finite element methods are now used for simulations of viscous and inviscid compressible flows. 
Important steps in the application of the methods to compressible flows were the generalization to the system of Euler 
equations expressed in terms of entropy variables (Hughes et al., 1986), the development of shock capturing terms, 
sometimes called artificial viscosity models based on the residual of the Euler equations as in Shakib (1988) and 
Almeida and Galeão (1996) after reformulation of the methods for entropy variables. On the theoretical side, the 
achievements included proofs of convergence of the methods for systems of conservation laws (Johnson et al., 1990). 

In the present paper, we use an implicit semi-discrete stabilized finite element method, based on a SUPG 
formulation plus a shock capturing operator derived from entropy variables, for space discretization of the Euler 
equations of compressible gas flow and compare two non-linear strategies: a fully implicit with exact Jacobian and 
other with an approximate Jacobian. The comparison is done in terms of computer time usage for problems in different 
flow regimes: subsonic and supersonic. 

The alternative approach for solving non-linear PDEs used here is the so-called Jacobian Free Newton-Krylov 
(JFNK) methods, that follows Johan et al. (1991) and Knoll and Keyes (2004). Such methods reduce memory 
requirements and may accelerate non linear convergence. We compare computer processing times and memory savings 
for both cases. 

Furthermore, two convergence acceleration techniques are employed. The freezing of the shock capturing operator, 
as in Catabriga and Coutinho (2002), that reduces significantly the residual norm in several orders of magnitude and the 
local time-stepping approach which decreases the residual norm as well. The main idea of this paper is to test the two 
acceleration techniques with the usual approach and the JFNK method, with structured and unstructured grids. We are 
especially interested in the convergence of high speed flows with shocks. 

The paper is organized as follows. In Section 2, the governing equations for compressible inviscid flows are 
described. In Section 3, we present the stabilized finite element formulation and the convergence acceleration 
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techniques are briefly described in Section 4. Section 5 presents results of some numerical tests and some conclusions 
are drawn in Section 6. 
 
2. Governing equations 
 

The quasi-linear form of the three-dimensional Euler equations in conservation variables without source terms 
follows Hirsch (1992) and are an invisid system of conservation laws represented by, 

 
],0[in0,, maxiit T×Ω=+FU          (1) 

 
where for Ω⊂3 and t∈[0, Tmax], the vector of conservative variables U, and the vector of Euler fluxes Fi are given 
respectively by: 

 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

e
u
u
u

U
U
U
U
U

3

2

1

5

4

3

2

1 1

ρU           (2) 

 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

i

i

i

i

ii

u

p

e
u
u
u

u

3

2

1

3

2

1

01

δ
δ
δ

ρF           (3) 

 
In Equations (2) e (3), ρ is the density of the fluid, u = [u1, u2, u3]T is the velocity vector and e is the total energy 

density, that is the sum of the internal energy E and the density of kinetic energy ||u||2/2, p is the thermodynamic 
pressure and δij is the Kronecker delta. Assuming that the fluid obeys the perfect gases law, the constitutive relations are 
given by the following expressions, 

 
vc Tι =          (4) 

 
( )1p γ ρι= −              (5)

      
where cv is the specific heat at constant volume, T is the absolute temperature, γ = cp/cv and cp is the specific heat at 
constant pressure. Alternatively, Eq. (1) may be written as 
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where the Jacobian matrices Ai, for I = x,y,z are defined as  
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The Euler equations can be recast as a symmetric form through a change of variables from conservative to entropy 
variables (V) as derived in Hughes et al. (1986). We define a scalar function named generalized entropy function by  
 

sρ=)H(U          (8)  
 
where s = ln(p/ργ) + s0, is the physical entropy by unity mass and s0 a reference entropy. Thus, we may introduce the 
entropy variables V = H,U and the relationship U → V is given by,  
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Therefore the Euler equations in entropy variables are alternatively written as  
 

[ ]maxi ,i,t T,0in      0~~
0 ×Ω=+ VAVA         (10)  

 
where Ã0 = U,V is symmetric positive definite and Ãi = AiÃ0 is symmetric. The finite element formulation of the present 
work is based in the discretization of Eq. (10). We specify suitable boundary and initial conditions to it.  

Assuming that the problem domain has a contour Γ = Γg U  Γh, the Euler equations admit boundary conditions of 
two types:  

• Dirichlet conditions: G(U) = g(t) in Γg where G(U) is a nonlinear vector function of conservation variables, U and 
g(t) are the prescribed values of G at the contour Γg of Ω.  

• Neumann conditions: Fi is given at the contour Γh of Ω. This condition is similar to specify values of first order 
derivatives of some or every dependent variables of the problem.  

 
3. Finite element discretization 
 

The semi-discrete formulation is characterized by a finite element discretization in space followed by a finite 
difference discretization in time. It is considered the space domain Ω divided in nel elements, Ωe

 , e = 1, 2,…, nel, 
where Ω = U  Ωe and Ωi ∩ Ωj = ø. Given the test functions Sh and the space of admissible variations Vh, respectively 
defined by: 
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where H1h(Ω) is a finite dimensional space over Ω, P1(Ωe) represents polynomials of first order in Ωe and Γg is the 
contour of Ω with Dirichlet prescribed conditions. Considering a standard discretization of Ω into finite elements, the 
SUPG formulation for the Euler equations in conservation variables introduced by Tezduyar and Hughes (1982, 83), 
supplemented by a shock-capturing operator is written as, 
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The stabilization matrix τ is defined through diagonal matrices. This form of stabilization was initially introduced 

by Hughes and Tezduyar (1984) and it was improved by Aliabadi et al. (1993). The matrix τ = τI depends on the 
parameter τ that is defined as:  
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where τl is the stabilization parameter correspondent to time-dependent terms, τa is the stabilization parameter 
correspondent to the advective terms, τδ is the stabilization parameter to discount the effects of shock-capturing 
operator, c is the acoustic speed and h is the mesh parameter defined as V1/3, where V is the element volume. The 
parameter ζ is a coefficient utilized in the time integration algorithm and CFL is the Courant-Friedrichs-Lewy number, 
both defined as 
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and β is an arbitrary normalized vector given by: 
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, α is a parameter controlling the stability and accuracy of the time-marching algorithm and ∆t is 

the time-step. In this work we adopt α = 0.5. The shock-capturing parameter δCAU can be defined as in Almeida and 
Galeão (1996) as 
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Uh
ξ , and on the contrary δCAU = 0. The components ∂xi/∂ξj are the terms of the transformation matrix 

between the physical coordinates and the local coordinates of the elements. The operator δCAU was deduced starting 
from as definition in entropy variables given in Almeida and Galeão (1996), applying inverse transformations. It is 
employed in the variational formulation (13) an approximation by linear tetrahedral finite elements, where Uh=N(x)v(t), 
N are linear test functions and v are functions dependent on time only. Such approximation produces a set of coupled 
nonlinear ordinary differential equations given by 
 

0CvMa =+                                                                                                                   (23) 
 
where v is the vector of nodal values of U, a is the derivative of v with respect to time, M is the generalized mass 
matrix, C is the generalized convection matrix.  

To solve the non-linear system (23) is used a Predictor-Multicorrector algorithm as presented in a general form in 
Hughes (1987) and more focused on compressible flows in Aliabadi et al. (1993). The resulting effective systems of 
linearized equations are solved by the GMRES algorithm with nodal block diagonal pre-conditioning as in Shakib 
(1988). All matrix coefficients and residual terms have been computed explicitly with the aid of symbolic algebra 
software. Thus, the routines to compute the left hand side element matrices and the right-hand side residual vector 
contains only single loops sweeping all elements in the mesh.  
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3.1. Matrix-vector products 
 

Even though we adopted a quasi-linear form of the Euler equations, the problem is still strongly non-linear and 
presents several shocks. To drive fast and accurate an steady state solution it is important to choose a suitable manner to 
treat the non-linearities. In the first approach, element contributions to the jacobian matrices are computed and stored. 
Matrix-vector products are computed by using element-by-element (ebe) loops. The main drawback of this strategy is 
its extensive memory requiments. For instance, when using a PC, this could be a limiting factor for large-scale analysis.  

The other approach adopted herein is the so-called Jacobian-Free Newton-Krylov (JFNK) method (Knoll and 
Keyes, 2004) where there is a connection between the non-linear methods and the solver itself. The Jacobian matrix is 
not stored, trading memory requirements for computer processing time. The matrix-vector products (Jx) performed 
within GMRES are approximated by finite differences. Thus, two residual calculations are performed and the product is 
then approximated by  
 

ε
ε ))(()((

)(
vRxvR

xvJ
−+

=           (28) 

 
where ε is a very small number. Here we adopt ε = 10-6 because preliminary tests with 10-15 ≤ ε ≤ 10-6 did not show 
much sensitivity to this parameter. 
 
4. Convergence acceleration techniques 
 

Two convergence acceleration techniques towards steady state were implemented and tested on typical examples 
with structured and unstructured grids. The first one is the freezing of shock capturing operator introduced within finite 
elements by Catabriga and Coutinho (2002). This idea follows Venkatakrishnan (1995) for finite volumes. In this 
approach, the operator is frozen, rather arbitrarily, after a fixed number of time steps or when a measure of convergence 
stagnation is observed. A simple heuristic is employed to detect stagnation and we stop updating the δ operator from 
that point on. In general, the non-linear problem converges very fast towards a steady state solution, reaching very low 
orders of magnitude and eventually machine zero. The idea is to compare the average L2 norm of the density residual 
(rho_avg) computed within a predetermined number of steps (say 30 to 50, for instance) with the maximum (rho_max) 
and minimum (rho_min) values of the same norm at a time interval. We then check if the upper and lower limits are 
bounded within a narrow range around the average value, that is,  

 
res_min  ≥  fmi  res_avg and res_max  ≤  fmax  res_avg                       (29) 
 

when and if such conditions are satisfied, we consider that solution has stagnated, and freeze the shock capturing 
operator. Here the limiters fmin and fmax are taken to be 1.2 and 0.8 respectively. 

The second scheme is a local time-stepping strategy. It evaluates different time steps for each element, according to 
a pre-defined CFL condition. Recall eq. (19) for the definition of the CFL number. It is interesting to observe that the 
CFL condition may be increasing when evolving to steady state, see Catabriga and Coutinho (2002) for two 
dimensional finite element applications. 
 
5. Numerical experiments 
 

In this section we show the solution of some classical inviscid flow problems. The first one is the one-dimensional 
steady shock to validate the three dimensional code. We present then two two-dimensional problems, an oblique shock 
and a reflected shock. All examples presented in Shakib (1988) and have closed solutions. For all cases were adopted a 
CFL = 1 condition to compute the analysis timestep, except for the unstructured mesh of the reflected shock example 
that used a CFL = 10. All solutions were obtained in a PC, with 2.0 Gbytes of memory and 2.4 GHz of processing 
power and  run with the three dimensional code. 
 
5.1. One-dimensional steady shock 
 

This problem models a one-dimensional steady flow of a inviscid fluid at Mach 2.0 with a normal shock. 
Supersonic flow enters the normal shock and subsonic flow exits the shock. The computational domain is defined by 
the interval 0 ≤ x ≤ 39, -0.5 ≤ y ≤ 0.5 and -0.5 ≤ z ≤ 0.5. The finite element mesh with 936 elements and 360 nodes is 
shown in Fig. (1). 
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Figure 1. Mesh for the steady shock problem and initial conditions. 

 
Densities, velocities and total specific energy are prescribed at the inflow and only total specific energy at the exit. 
Velocity components u2  and u3 are prescribed null at all times. At the Fig. (2) we have the density profile solution that 
is in agreement with the exact solution. It is also important to notice that the solution without the shock capturing term 
(SUPG only) is good but does not represent the shock adequately as the others do. 
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Figure 2. Density profile for the steady shock problem. 

 
5.2. Two-dimensional oblique shock 

 
This problem consists in a supersonic two-dimensional flow (Mach number M=2) of an inviscid fluid across a slip 
surface. The flow meets the surface at a 10 degree angle, see Fig. (3) for further details and problem description. An 
oblique shock wave reflects at a 29.3 degree angle. The computational domain is defined by the interval a unit squares 
and a small thickness at the z direction. Two meshes were considered. A structured one with 882 nodes and 2000 
elements and a non-structured with 750 nodes and 2859 elements. All elements concerned are linear tetrahedral and the 
front view of both meshes can be appreciated in Fig (4) along with density contours results. GMRES tolerance was set 
to 10-3 with 50 krylov vectors and a limit of 15 non-linear iterations. Boundary conditions at inflow and outflow (BC) 
and exact solution below the shock region are given in Fig. (3). Initial conditions are taken as free-stream values. The 
no flow boundary condition of  u2 = 0 is imposed at the bottom of the domain and the supersonic outflow has no 
prescription at all. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Oblique shock problem description. 
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Figure 4. Solutions in terms of density contours for the oblique shock: structured (a) and unstructured (b). 
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Figure 5. Evolution of density residual for the structured case: ebe (a), JFNK (b). 
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Figure 6. Evolution of density residual for the unstructured case: ebe (a), JFNK (b).  

 
By the results presented in terms of the density residual norm in figures (5) and (6) it is possible to observe the 

residual stagnation, even though a stationary condition has been achieved. The freezing of the shock capturing operator 
(fz), as well as the local time-stepping (ldt) techniques did improve the convergence by dropping the residual a few 
orders of magnitude. It was also observed that both techniques worked better with the unstructured mesh, what is 
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considered a good aspect as long as we are interested in complex three-dimensional geometries and adaptive mesh 
refinement methods.  

By analyzing Table 1, it can be verified that the JFNK method can be rather expensive. In order of 3 to 5 times 
more time consuming than the elementwise exact Jacobian.. On the other hand, memory costs for the JFNK method on 
the structured mesh were in the order of 0.36 of the ebe method and 0.26 for the unstructured case, what makes some 
large-scale analysis feasible in a PC, for instance. It is also interesting to notice that for the structured mesh the 
acceleration strategies had almost the same processing time, while for the unstructured case the freezing technique was 
rather faster and the local time-stepping was a bit more expensive, compared to the usual manner. We believe that is an 
important observation because we are interested in fast and accurate solutions, that is, adopt one convergence technique, 
or a set of them, which improves convergence but does not affect computer processing times.  
 
Table 1 – Relative processing time for the oblique shock example. 

Run type Structured mesh Unstructured mesh 
control 1.000 1.000 

fz 1.007 0.315 
ldt 1.005 1.791 

fz + ldt 0.945 0.970 
JFNK 3.782 5.187 

JFNK fz 3.578 3.906 
JFNK ldt 5.344 8.774 

JFNK fz + ldt 5.102 8.050 
 

5.3. Two-dimensional reflected shock 
 
The problem consists of a rectangular domain (0 ≤ x ≤ 4.1 and 0 ≤ y ≤ 1.0) with three regions of flows partitioned 

by shocks, as shown in Fig. (7). The prescribed boundary conditions are density, velocities and total specific energy at 
the left and top boundaries. At the bottom boundary, a no flow boundary condition is imposed, i.e. u2 = 0. At the right 
boundary there is no prescription, since the outflow is supersonic. GMRES tolerance was set to 10–1 with a limit of 5 
non-linear iterations. A view of the structured mesh with 3402 nodes and 8000 elements and of the unstructured mesh 
with 27944 nodes and 142075 elements is shown in Fig. (8) along with density contours solutions.  
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Reflected shock problem description.  

 
(a) 
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(b) 

Figure 8. Solutions in terms of density contours for the reflected shock: structured (a) and unstructured (b). 
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Figure 9. Evolution of density residual for the structured case: ebe (a), JFNK (b). 
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Figure 10. Evolution of density residual for the unstructured case (CFL = 10): ebe (a), JFNK(b).  

 
In this example the results seemed more promising, according to figures (9) and (10). Note that, for the structured 

case, the JFNK approach did not increase non-linear convergence as desired. On the other hand, the freezing technique 
did improve drastically in this example. It is to mention that the results for the local time-stepping strategy did improve 
convergence only a bit and for the unstructured case results were not available, because convergence failed. As before 
the freezing technique did improve convergence very fast as soon as the shock capturing operator stopped being 
updated. Again processing time for the JFNK approach is higher than for the ebe, as can be seen in Table 2. Although, 
memory costs for the JFNK method were 0.35 of the ebe demanded memory for the structured case and 0.22 for the 
unstructured case.  
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Table 2 – Relative processing time for the reflected shock example. 

Run type Structured mesh Unstructured mesh 
control 1.000 1.000 

fz 0.981 1.301 
ldt 0.718 0.617 

fz + ldt 0.324 1.078 
JFNK 1.254 2.401 

JFNK fz 2.396 8.916 
JFNK ldt 2.319 - 

JFNK fz + ldt 1.785 - 
 
 
6. Conclusions 
 

We presented numerical tests with the objective to gain some convergence acceleration towards steady state 
solutions for the compressible Euler equations. Two approaches account for treating the Jacobian matrix. In the first the 
Jacobian matrix is stored and matrix-vector products within the GMRES iterative solver are performed elementwise in a 
direct manner. In the Jacobian free case, the matrix-vector product is approximated by finite differences, saving 
memory requirements but spending more processing time. Although the latter strategy helps nonlinear convergence it is 
more time consuming, in the order up to 5 times more. In our case the JFNK method did not improve non-linear 
convergence as desired, possibly due to the quasi-linear form of the Euler equations adopted here. 

In the experiments driven for two dimensional problems the freezing was the most effective technique. The local 
time stepping also reduced residual norms, but in a minor sense. The convergence acceleration techniques were very 
effective on the simple test cases of this study. Further tests on typical three-dimensional problems, such as flows 
around aerospace vehicles, which are geometrically complex, are of main interest. 
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