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Abstract. The �ow �eld generated by temperature gradient induced density variations is one of the most well
known problems in natural convection. In such cases, buoyancy is the main mechanism responsible for triggering
the instability that drives the �ow. However, there are two important exceptions: microgravity and microscale
�uid systems. Under any of these conditions, the surface tension gradients that appear at the interface between
di�erent �uids become increasingly important. In this work we examine monotonic and oscillatory instabilities
induced by surface tension gradients by means of a linear stability analysis in a two-layer system with �nite depths.
Interfacial deformation is included and gravity is considered to act at the interface, although buoyancy forces are
ignored within the �uid layers. First, prescribed temperature boundary conditions are imposed at the top and
bottom rigid surfaces. However, results are also obtained for the case of a prescribed heat �ux imposed at the
bottom surface. Our study is focussed on obtaining estimates for the critical depth ratios at which discontinuous
character of the neutral curves for monotonic instability occurs. We also show that the onset of convection may
be oscillatory rather than monotonic depending on the depth ratio value.
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1. Introduction

Thermocapillary convection arises from the �uid stress induced by a gradient of surface tension along a �uid
interface or surface when this gradient is associated with varying temperature. Solutalcapillary convection,
associated with a solute gradient, gives rise to similar phenomena. An interesting and complete summary of the
origins of this research topic is given in the preface of Nepomnyashchy et al., 2001. Many of the early observations
had to do with solutal e�ects. However, thermocapillary convection has been investigated extensively since
the experimental study of Block, 1956 and the theoretical study of Pearson, 1958. These studies led to the
conclusion that the convection observed by Bénard, 1900 in thin, heated liquid �lms was apparently due to
thermocapillary rather than buoyancy e�ects. The recently published books of Nepomnyashchy et al., 2001 and
Colinet et al., 2001 present a broad survey of the �eld, whereas the book by Narayanan and Schwabe, 2003
provides a survey of recent research topics. These books contain a discussion of the di�erent types of application
of the thermocapillary convection results. Many of these occur in technology, which is not surprising in view of
the common occurrence of �uid interfaces in material processing, chemical and biomedical engineering. Speci�c
applications in material processing are summarized in the proceedings of a conference organized by the Royal
Society of London (Hondros et al., 1998). Of special interest in this area is the growth of single crystals
(Kuhlmann, 1999), which has been emphasized in NASA's program on materials processing in space. Due to
the diminished role of buoyancy, a microgravity (space) environment is ideally suited for the investigation of
thermocapillary phenomena. For instance, Simanovskii et al., 2003 present the results of an experiment done
in space on Bénard-Maragoni convection in a three-�uid system.

The present work considers the dynamics of two distinct immiscible �uid layers constrained by parallel
horizontal solid walls. The interface between these two �uids is allowed to deform. Although we assume
negligible buoyancy forces within the �uids, the e�ect of gravity in deforming the interface is also included.
The mathematical model we use follows the one used by Jiménez-Fernández and García-Sanz, 1996, where both
solid walls were maintained at constant temperature. We extended this model to allow a constant heat �ux at
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the lower wall. One of the main reasons for doing so is the recognition by Slavtchev et al., 1998 that oscillatory
instability can occur with a constant heat �ux condition for situations where oscillations are not predicted with a
constant temperature condition. Another important reason is that stabilization of Rayleigh-Bénard-Marangoni
convection via feedback control (Or and Kelly, 2001) is simplest to realize experimentally by controlling the
heat �ux instead of the temperature at the lower wall.

The Bénard-Marangoni instability of a gas-liquid system has been studied in the past by many authors (Yang,
1992; Zaman and Narayanan, 1996; Pérez-Garcia et al., 1998), including Takashima, whose work focussed on
both stationary (Takashima, 1981a) and oscillatory (Takashima, 1981b) onset of convection. However, the
dynamics of the gas layer was disregarded in these previous studies. The limiting conditions, in terms of lower
and upper bounds for the depth ratio between the two layers (Simanovskii and Nepomnyashchy, 1993), that
must be satis�ed in order for these one-layer results to be valid are discussed in the present paper, where special
focus is placed on the long wavelength instability for mean heat transfer in either direction. Results are also
obtained for the case of two liquid layers.

One of the di�culties in the study of the current problem comes from the great number of parameters present
in most models and their proper usage. Velarde et al., 2001 pointed out that some of the published results were
not consistent with the mathematical model used and that these inconsistencies were related to the Boussinesq
approximation. This was also pointed out by Regnier et al., 2000, who added that some reported results were
unrealistic from the experimental point of view because the Crispation and Bond numbers chosen lead to �uid
thicknesses too small to be attained in experiments on earth. These requirements lead to constraints of small
temperature di�erences and small �uid depths in order to maintain small Rayleigh numbers in both �uids and
hence justify the absence of buoyancy forces.

2. Mathematical Model

The present model is based on the work of Jiménez-Fernández and García-Sanz, 1996, and its notation and
scaling is the same as used by Johnson and Narayanan, 1999 and Colinet et al., 2001. The model consists
of two in�nite horizontal �uid layers bounded above, at z = d2, by a rigid surface maintained at a constant
temperature T2 and below, at z = −d1, by another rigid surface maintained at either a constant temperature
T1 or a constant heat �ux qs. The undisturbed interface is located at z = 0 and the interfacial surface tension
σ(T ) is assumed to linearly decrease with increasing temperature as σ(T ) = σ0 − σT (T − T0), where T0 is the
temperature of the interface at rest. All the other physical properties are taken to be constant and are de�ned
as: dynamic and kinematic viscosities µi and νi, thermal conductivities and di�usivities ki and κi, and densities
ρi, where the index i = 1 refers to the lower layer and the index i = 2 to the upper layer. The absence of an
index indicates a property ratio (ex: µ = µ2/µ1). The problem is written in dimensionless form by introducing
the following scales: length d1, time d2

1/κ1, velocity κ1/d1 and temperature ∆T = T1 − T0 (or qs d1/k1).
The dimensionless parameters that appear are: depth rato d = d2/d1, Prandtl number Pr = ν1/κ1, complex

frequency λ, overall wavenumber α = d1 (α2
x + α2

y)1/2, Crispation number Cr = µ1κ1/σ0 d1, Bond number
Bo = g d2

1(ρ1 − ρ2)/σ0 and the Marangoni number Ma = σT d2
1 β/µ1κ1, where β is the temperature gradient

across the lower layer and is equal to either ∆T/d1 for a prescribed temperature at the lower wall or qs/k1 for
a prescribed heat �ux there. The Crispation number accounts for the magnitude of the interface deformation
whereas the Bond number quanti�es the capillarity equilibrium between gravity and surface tension forces.

The solution of the linear eigenvalue problem, where the real part of λ is set to zero, yields the critical
Marangoni number. The onset of convection will be stationary (oscillatory) if the complex part of λ is set to
zero (nonzero). When the onset of convection is oscillatory, the frequency of oscillation (complex part of λ) is
obtained by requiring the imaginary part of the critical Marangoni number to be zero. Further details about
the mathematical model used here can be found in the previously mentioned references.

3. Linear Stability Analysis

The solution for the marginal Marangoni number for the case of a stationary onset of convection where
both horizontal walls have prescribed temperatures was obtained by Smith, 1966. His analytical solutions was
�rst reproduced through a symbolic computation procedure developed using the Mathematica system (Wolfram,
1999). This procedure was generalized in such a way that allowed us to simply replace the prescribed temperature
boundary condition at the lower surface by a prescribed heat �ux condition and run once again the code in
order to generate the following new analytical solution:

Ma =
(

2α2
(
Bo + α2

)
κ csch(α)

(
k cosh(α) cosh(dα) + sinh(α) sinh(dα)

)(
4 α

(
1 + d

(
µ + 2 α2 (d + µ)

)

− dµ cosh(2α)− cosh(2 dα)
)
− (

2 + 4 d2 α2
)
sinh(2 α) + (1− µ) sinh(2 (1− d)α)− 2

(
µ + 2 α2 µ

)

sinh(2 dα) + (1 + µ) sinh(2 (1 + d) α)
))/(

d3 α3
(
Bo + α2

) (
cosh(2α)− 1− 2 α2

)
cosh(dα)3
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coth(α) + 4Cr α5 κ cosh(3 dα) coth(α) + α3 cosh(dα) coth(α)
(
4 Cr α2 κ

(−1 + 2 d2
(
2 α2 (µ− 1)

+µ
)− 2 d2 µ cosh(2α)

)
+ d3

(
Bo + α2

)(
1 + 2 α2 − cosh(2α)

)
sinh(dα)2

)
+ sinh(dα)

(
α

(
2 + α2

)

(
Bo + α2

) (
1 + 2 d2α2

)
κ + 8 Cr α5κ

(
d2

(
2 α2(µ− 1) + µ

)− 1
)− 8 Cr d2 α5 κµ cosh(2α) + α κ

(
(8Cr − 1)α4 − (2 + Bo)α2 − 2 Bo

)
cosh(2 dα)− κ

(
Bo + α2

) (
cosh(2α)− 1 + 2 α2

)
coth(α)

(
1 + 2 d2 α2 − cosh(2 d α)

)/
2 +

(
Bo + α2

) (
1 + 2 α2 − cosh(2α)

)
coth(α) sinh(dα)2

))
. (1)

An analytic expression for the marginal Marangoni number at zero wavenumber can be obtained from Smith,
1966 for the prescribed temperature case and is given by

Ma(0) =
2 Bo d (d + k) (d + µ)
3 Cr (1 + d) (d2 − µ)

. (2)

The same is done with solution (1) for the prescribed heat �ux case, and we obtain

Ma(0) =
2 Bo d k (d + µ)
3 Cr (d2 − µ)

. (3)

In both limiting cases (2) and (3) there is a critical depth ratio given by dc1 =
√

µ at which the zero wavenumber
Marangoni number changes sign discontinuously. Although Smith, 1966 did not comment upon this fact when
looking at the prescribed temperature case, Simanovskii and Nepomnyashchy, 1993 gave a detailed account of it
in their book. This discontinuous behavior appears for any choice of �uids, and obviously cannot be predicted
by any model that neglects the dynamics of the gas layer in, for instance, an air-water system.

We note that relations (2) and (3) di�er by a factor (1 + d k−1)/(1 + d), which tends to k−1 in the limit
d → ∞ and to 1 in the limit d → 0. Hence, the large wavelength results are more sensitive to the thermal
boundary condition at the lower wall for the case of large depth ratios.

One is also able to extend results (2) and (3) to �nd out how the marginal Marangoni number behaves as it
approaches the zero wavenumber limit. For the prescribed temperature case, the O(α2) approximate expression
obtained by Simanovskii and Nepomnyashchy, 1993 is

Ma ' 240 d κ
(
Bo + α2

)
(d + k) (d + µ)

360 Cr κ (1 + d) (d2 − µ) + 3α2 Bod3 (κ− d2)
, (4)

whereas for the prescribed heat �ux case, our O(α2) approximate expression is given by

Ma ' 240 d k κ
(
Bo + α2

)
(d + µ)

360 Cr κ (d2 − µ) + Bod3 α2 (5 κ− 3 d2)
. (5)

Important information can be extracted from expressions (4) and (5). First of all, these relations can be
used to estimate the location of the Marangoni number discontinuity in the limit of long wavelengths. This was
done by Colinet et al., 2001 for the prescribed temperature case (4) and they obtained

αd1 '
√

120
Cr

Bo

κ (1 + d) (µ− d2)
d3 (κ− d2)

, (6)

whereas for the prescribed heat �ux case (5) we obtain

αd1 '
√

120
Cr

Bo

κ (µ− d2)
d3 (5 κ/3− d2)

. (7)

Because the Bénard-Marangoni convection is absolutely unstable, the wavenumber in a linear stability
analysis has to be a real number. This way, expression (6) is only valid if d2 < µ, κ or d2 > µ, κ. Similarly,
expression (7) is only valid if d2 < µ, 5κ/3 or d2 > µ, 5κ/3. As mentioned before, a further constraint for both
estimates (6) and (7) is that αd1 has to be a small number. It is interesting to note that when these conditions
are not met, as is seen in the next sections, no discontinuity is present in the long wavelength region.

The second important fact extracted from expressions (4) and (5) is that in the limit of zero Crispation
number there is another critical depth ratio, given by dc2 =

√
κ for the prescribed temperature case (Simanovskii

and Nepomnyashchy, 1993) and by dc2 =
√

5κ/3 for the prescribed heat �ux case. When the Crispation number
is nonzero, an approximation of order O(Cr/α2Bo) for these critical depths can be obtained from expressions
(4) and (5). For the prescribed temperature case we �nd
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dc2 '
√

κ +
120
α2

d2

(
1 +

√
κ√

κ

)
Cr

Bo
(κ− µ) ' κ1/2

{
1 +

60
α2

d2

(
1 +

√
κ√

κ

) (
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κ

) Cr

Bo

}
, (8)

and for the prescribed heat �ux case we �nd

dc2 '
√

5 κ

3
+

72
α2

d2

√
3

5 κ

Cr

Bo

(
5 κ

3
− µ

)
'

(
5 κ

3

)1/2
{

1 +
36
α2

d2

√
3

5 κ

(
1− µ

5 κ/3

)
Cr

Bo

}
. (9)

where αd2 is the wavenumber at which the second discontinuity �rst appears. It is important to emphasize that,
as shown in the next sections, the second discontinuity is never present alone and is always accompanied by the
other discontinuity at αd1. Also, αd2 cannot be predicted on the basis of either equation (4) or equation (5),
and higher order terms are necessary for its estimation.

In general, the parameter Cr/α2Bo is a small number and the expressions for the second critical depth ratio
dc2 obtained in the limit Cr → 0 are good approximations for small Crispation number cases. Nevertheless,
expressions (8) and (9) provide information on how dc2 behaves with respect to several di�erent parameters.

All analytical expressions presented so far pertain to the stationary onset of convection. The analytical
expressions related to the marginal Marangoni number for an oscillatory onset of convection could not be
simpli�ed to anything with a treatable size by the authors and are not shown here. However, numerical results
related to this onset of convection are also discussed in the next sections.

In the following sections, the behavior of the marginal Marangoni number is studied and the main control
parameter used is the depth ratio between the two �uid layers. In order to facilitate our analysis, a few selected
�uids are chosen to be studied and their properties are shown in Tab. (1). It is also important to note that,
in the prescribed temperature case, a negative Marangoni number (or temperature di�erence) represents an
onset of instability with the upper wall temperature being higher than the lower wall one. The opposite is
true for a positive Marangoni number (or temperature di�erence). In the prescribed heat �ux case, a negative
Marangoni number (or heat �ux) represents cooling from below whereas a positive Marangoni number (or heat
�ux) represents heating from below.

Table 1: Properties of Air, Water, n-Hexane and Acetonitrile at T0 = 25oC

µ(m2/s) k(W/m K) κ(m2/s) ρ(Kg/m3) α(1/K) σ0(N/m)∗ σT (N/mK)∗

Air 1.838 10−5 2.664 10−2 2.229 10−5 1.188 3.271 10−3 �� ��
Water 9.136 10−4 6.069 10−1 1.456 10−7 997 2.635 10−4 7.213 10−2 1.774 10−4

n-Hexane 2.999 10−4 1.200 10−1 8.071 10−8 655 1.41 10−3 1.789 10−2 1.022 10−4

Acetonitrile 3.694 10−4 1.880 10−1 1.086 10−7 776 1.41 10−3 2.866 10−2 1.263 10−4

∗ with respect to air

4. Gas-Liquid Layers

We consider here the case of air above water as being representative of a gas-liquid system, for which the
property ratios are: µ = 0.02012, k = 0.0439, κ = 153.1 and ρ = 0.001192 (from Tab. (1)).

The behavior of the Marangoni number at the onset of stationary convection in a two-layer system is
well known for gas-liquid layers subjected to prescribed temperature boundary conditions (Simanovskii and
Nepomnyashchy, 1993). This behavior is shown in Fig. (1), which also shows the corresponding results for
the prescribed heat �ux boundary condition case. In this �gure, the thickness of the lower layer is set to be
d1 = 0.5 mm, yielding Cr = 3.689 10−6 and Bo = 3.38 10−2. Also, dimensional temperature di�erences and
heat �uxes are presented instead of neutral Marangoni numbers Man in order to provide estimates of typical
values that would be used in an experiment. For each boundary condition case, results pertaining to three
di�erent models are shown in this �gure: 1) our two-layer model (solid lines), 2) a �conducting air-layer� model
that neglects convection in the upper gas layer (dotted lines with stars, Pérez-Garcia et al., 1998) and 3) the
traditional one-layer model in which the dynamics of the gas layer is modelled solely by the Biot number
(dashed-dotted lines with squares, Gousbet et al., 1990). The stable range is always within 0 < Ma < |Man|.

The one-layer model predicts accurate enough results in the short wavelength range (α > 0.75) but cannot
capture the long wavelength behavior well as seen in Fig. (1). As was mentioned before, this model is not able
to capture the discontinuities that can occur in the Marangoni number behavior. Hence, it is valid only when
dc1 < d < dc2. These results were obtained with a small but �nite Biot number (Bi = 10−3) but the model
is actually rather insensitive to small variations in this parameter. The qualitative behavior of the Marangoni
number is the same as long as the Biot number has a nonzero value.
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Figure (1) also shows results generated from the �conducting air-layer� model, which is obtained from our
two-layer solution in the limit of zero dynamic viscosity (µ → 0) and zero density ratio (ρ → 0). This model
is much more accurate than the one-layer model and the agreement with our solution is very good as long as
d À dc1. The model is able to capture the discontinuity associated with dc2, since it accounts for the thermal
di�usivity of the air-layer, but it cannot capture the discontinuity associated with dc1, since it neglects the
viscous e�ects of the air-layer.

two-layer

conducting air-layer?

one-layer

s - stable
u - unstable

u

s

s

u

s

u

0 0.1 0.2 0.3 0.4 0.5
wavenumber

-10

-5

0

5

10

15

t
e
m
p
e
r
a
t
u
r
e
d
i
f
f
e
r
e
n
c
e

d = 50.

0 0.1 0.2 0.3 0.4 0.5
wavenumber

-100

-50

0

50

100

150

200

h
e
a
t
f
l
u
x

d = 50.

0 0.1 0.2 0.3 0.4 0.5
wavenumber

2

4

6

8

10

t
e
m
p
e
r
a
t
u
r
e
d
i
f
f
e
r
e
n
c
e

d = 1.

0 0.1 0.2 0.3 0.4 0.5
wavenumber

60

80

100

120

140

160

180

200

h
e
a
t
f
l
u
x

d = 1.

0 0.1 0.2 0.3 0.4 0.5
wavenumber

-4

-2

0

2

4

6

8

10

t
e
m
p
e
r
a
t
u
r
e
d
i
f
f
e
r
e
n
c
e

d = 0.1

0 0.2 0.4 0.6 0.8 1
wavenumber

0

50

100

150

200

h
e
a
t
f
l
u
x

d = 0.1

Figure 1: Marginal stability curves for air over water with prescribed temperature (left, ∆T in oK) and heat
�ux (right, Q ′′ in W/m2) at the bottom rigid surface for Cr = 3.689 10−6 and Bo = 3.38 10−2 (d1 = 0.5 mm).
Vertical solid lines represent the location of the Marangoni number discontinuity in wavenumber space.

The �rst critical depth ratio predicted by our analysis is an exact result and yields dc1 ' 0.136, for both
boundary condition cases. This value is in perfect agreement with the one obtained by numerically examining
the full solution for the marginal Marangoni number given by Smith, 1966 for the prescribed temperature case
and by equation (1) for the prescribed heat �ux case. The second critical depth ratio is an approximate result
and yields for a prescribed temperature and heat �ux boundary conditions dc2 ' 12.1 and 14.1, respectively.
The values obtained from the full solution for the marginal Marangoni number are dc2 ' 12.8 and 14.5.
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Critical Marangoni numbers Mac and wavenumbers αc for the case of air over a water layer with d1 = 1 mm,
which yields Cr = 1.844 10−6 and Bo = 0.1354, are shown in Fig. (2) as functions of the depth ratio. Like
before, the stable range is always within 0 < Ma < |Mac|. One important characteristic that can be noticed in
this �gure is that prescribing a heat �ux instead of a temperature at the lower boundary reduces the numerical
value of the critical Marangoni number for both heat transfer from above and below, but specially from above.
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Figure 2: Critical Marangoni number vs and wavenumber as functions of the depth ratio for Cr = 1.844 10−6

and Bo = 1.354 10−1 (d1 = 1mm). Prescribed temperature case given by solid lines and prescribed heat �ux
case given by dashed lines.

It has been noted previously (Velarde et al., 2001) that an oscillatory onset of convection is not realizable
for an air-water system because the critical Marangoni number associated with it is always higher than the one
obtained for a stationary onset, for cases of heat being transferred either from above or below. By examining
Fig. (1), one might think that an oscillatory onset of convection is possible for the case of heat being transferred
from above when dc1 < d < dc2 since, within this range of depth ratios, a stationary onset of convection is
suppressed. However, an oscillatory onset of convection cannot be achieved because the temperature di�erences
or heat �uxes needed are too high (Regnier et al., 2000 and Juel et al., 2000).
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Figure 3: Critical Marangoni number as a function of the depth ratio for prescribed temperature (αe , stat. '
10.17, αe , osc. ' 2.3, ωe ' 42.12) and heat �ux cases (αe , stat. ' 9.46, αe , osc. ' 2.21, ωe ' 40.49) for air over
water with d1 = 1 mm (Cr = 1.844 10−6 and Bo = 1.354 10−1).

Nonetheless, Slavtchev et al., 1998 have found that a constant heat �ux boundary condition can promote
oscillatory instability when studying the one-layer model. However, this was only achieved at relatively high
Crispation numbers (Cr > 0.006). In general, such high values of this parameter can be obtained by decreasing
the thickness of the liquid layer to very small values. We have investigated numerically such a feature using
our two-layer model and found interesting results. As one can see in Fig. (1), the large wavelength instability
due to heat transfer from below is suppressed when the depth ratio is decreased below dc1 since the �uid is
only unstable to heat being transferred from above in this region. As the depth ratio is further decreased, not
only does the Ma < 0 region increase but also does the critical Marangoni number for the stationary onset of
convection. At the same time, we have found that the critical Marangoni number for the oscillatory onset of
convection decreases, reaches a minimum and then starts increasing again, but at a rate lower than the critical
value for the stationary onset. This trend is shown in Fig. (3), where the exchange of instability onsets occurs
at de ' 2.96 10−3 and Mae ' 6585 (or ∆T ' 4.94 oK) for the prescribed temperature case, and de ' 3.12 10−3

and Mae ' 5810 (or qs ' 2.65 kW/m2) for the prescribed heat �ux case. Although the exchange point is
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relatively insensitive to the choice of thermal boundary condition, the oscillatory instability has signi�cantly
larger wavelengths than the stationary instability. A drawback that might not allow this result to be veri�ed
experimentally is the very low value of the air-layer thickness, which could make the uneveness of the upper solid
wall an important parameter. This problem may be avoided by increasing the thickness of the liquid layer, but
this was not attempted here since buoyancy e�ects, not included in our model, might then become important.

5. Liquid-Liquid Layers

The impact of imposing a prescribed heat �ux boundary condition on a liquid-liquid system is analyzed
through the consideration of an n-hexane liquid phase over an acetonitrile one. We made this choice of liquids
because an oscillatory onset of convection was observed in the experiment reported by Juel et al., 2000 in which
these liquids were used.

The properties of these liquids are presented in Tab. (1), for a reference temperature T0 = 25 oC, where
the surface tension values shown are with respect to air. Both surface tension coe�cients σ0 and σT between
liquids could be estimated from the ones given in Tab. (1) using Antonow's rule but the values given by Juel
et al., 2000 are used instead. From this table, we are able to obtain the following property ratios: µ = 0.8119,
k = 0.6383, κ = 0.7432 and ρ = 0.8441.

For gas-liquid systems in general, we have dc2 > dc1 independently of the boundary condition prescribed.
This allows us to set these critical depth ratios as bounds for the applicability of the one-layer model. However,
such a characteristic doesn't necessarily carry on for a two-liquid system. In fact, an interesting feature appears
for our choice of liquids. This choice leads to dc1 ' 0.901 and either dc2 ' 0.859 (dc1 > dc2) for the prescribed
temperature case or dc2 ' 1.113 (dc2 > dc1) for the prescribed heat �ux case. These results for dc2 are based
on d1 = 1mm, which yields Cr = 3.726 10−6 and Bo = 0.111. It is interesting to note that our de�nition of
dimensionless parameters gives Cr/Bo ∼ d−3

1 . Hence, equation (8) indicates that if d1 is decreased the value of
dc2 for the prescribed temperature case decreases because µ > κ. However, equation (9) indicates that if d1 is
decreased the value of dc2 for the prescribed heat �ux case increases because µ < 5κ/3.

The behavior of the marginal Marangoni number as a function of the wavenumber for di�erent depth ratio
values is shown in Fig. (4) for d1 = 1 mm. In this �gure, the prescribed temperature case is shown on the left
whereas the prescribed heat �ux case is shown on the right. First, we focus our discussion on the prescribed
temperature case. As long as d > dc1, the discontinuity is located in the long wavelength region and the marginal
Marangoni number is positive there. By limiting the depth ratio to the range dc1 > d > dc2, the discontinuity
disappears and the �uid is unstable to heat being transferred from above only. As the depth ratio d is de-
creased to dc2, a discontinuity at a �nite nonzero wavenumber appears. As the depth ratio is further decreased,
this discontinuity bifurcates into two discontinuities that create a positive Marangoni number region between
negative Marangoni number regions. This positive region increases in size as the depth ratio is further decreased.

As mentioned before, by prescribing the heat �ux instead of the temperature at the lower wall we obtain
dc2 > dc1. However, approximate expressions were used to generate this result. The marginal Marangoni
number behavior as obtained from the full solution (1) for the prescribed heat �ux case is also shown in Fig.
(4). It turns out that, unlike the prescribed temperature case, the Marangoni number has a discontinuous
behavior for any value of the depth ratio. The reason for this discrepancy is that αd2 is actually zero and not a
�nite nonzero number as in the prescribed temperature case. Hence, according to equation (9), dc2 → ∞ and
becomes meaningless. This way, as long as d > dc1, the marginal Marangoni number is positive within the long
wavelength region and negative elsewhere. As the depth ratio is further decreased and d < dc1, the Marangoni
number behavior is similar for both prescribed boundary condition cases.

Critical Marangoni numbers, wavenumbers and frequencies as functions of the depth ratio are shown in Fig.
(5). Solid lines represent the prescribed temperature case whereas dashed lines represent the prescribed heat
�ux case. Also, stationary onsets of convection are shown without symbols whereas oscillatory ones are shown
with symbols. These results are based on d1 = 1mm. One can see in this �gure that the critical Marangoni
number for a stationary onset of convection due to heat transfer from below is decreased by imposing a heat
�ux at the bottom rigid boundary. The changes are not as signi�cant when heat is being transferred from
above. In contrast to the gas-liquid case, we could not �nd an oscillatory instability in the limit of very low
depth ratios. However, oscillatory onset of convection can be achieved for the two-liquid system at higher depth
ratios, e.g. d > 1, as predicted and observed in the work of Juel et al., 2000. One can also see in this �gure that
critical Marangoni numbers for an oscillatory onset of convection can be decreased by prescribing the heat �ux
instead of the temperature at the bottom rigid boundary. Results for d > 2 are not analyzed because buoyancy
e�ects would have to be considered. We also note here that, although not shown in this �gure, stationary and
oscillatory curves for the critical Marangoni number do intersect at around d ' 1. Finally, by comparing the
long wavelength results by Juel et al., 2000 to ours, we note that they agree well in the limit of low depth ratios.
This leads to the conclusion that buoyancy forces are negligible in the long wavelength range.
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Figure 4: Marginal stability curves for n-hexane over acetonitrile for prescribed temperature (∆T in oK) and
heat �ux (Q ′′ in W/m2) at the bottom rigid surface for Cr = 3.726 10−6 and Bo = 1.11 10−1 (d1 = 1 mm).
Vertical solid lines represent the location of the Marangoni number discontinuity in wavenumber space. Stable
and unstable regions de�ned as in �gure 1 (stable within 0 < Ma < |Man|, unstable otherwise).
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Figure 5: Comparison between critical Marangoni number, wavenumber and frequency as functions of the depth
ratio for the prescribed temperature (solid lines) and prescribed heat �ux (dashed lines) cases for stationary (no
symbols) and oscillatory (symbols) onset of convection with Cr = 3.726 10−6 and Bo = 1.11 10−1 (d1 = 1 mm).
Stable and unstable regions de�ned as in �gure 2 (stable within 0 < Ma < |Mac|, unstable otherwise).

6. Conclusions
The Mathematica software proved to be very e�cient from beginning to end due to its analytical, numerical

and graphical resources. Its symbolic computation capabilities simpli�ed greatly all analytical derivations and
allowed us to explore in depth the physical trends of the problem at hand.

The impact of using a prescribed heat �ux boundary condition instead of a temperature one was demon-
strated. This change decreased the critical Marangoni number for heat transfer from either direction in an
air-water system, and for heat transfer from below in a n-hexane-acetonitrile liquid system. Also, oscillatory
onset of convection was shown to be possible for an air-liquid system for very low depth ratio values. This
unstable convection mode was also shown to be possible for an n-hexane liquid layer over an acetonitrile liquid
layer as long as d > 1.
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