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Abstract. This paper presents the solution of an inverse heat transfer problem of function estimation. The physical problem 
considered here involves the heating of a solid cylinder by hot water in a temperature-controlled bath. This paper addresses the 
identification of the unknown boundary heat flux at the surface of the cylinder. Temperature measurements taken at selected 
positions within the cylinder are assumed available for the inverse analysis. The unknown heat flux is estimated by using the 
conjugate gradient method with adjoint problem. Results obtained with simulated and actual experimental measurements are 
presented and compared with those obtained with the prameter estimation approach described in Part I of this paper. This work 
was performed within the scope of a graduate course in the Department of Mechanical Engineering of COPPE/UFRJ. The last six 
authors of this paper are the students of this course; they are listed in alphabetical order, irrespective of their grade in the course.  
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1. Introduction  
 

Inverse heat transfer problems rely on temperature and/or heat flux measurements for the estimation of unknown 
quantities appearing in the analysis of physical problems in this field. As an example, inverse problems dealing with 
heat conduction have been generally associated with the estimation of an unknown boundary heat flux, by using 
temperature measurements taken below the boundary surface. Therefore, while in the classical direct heat conduction 
problem the cause (boundary heat flux) is given and the effect (temperature field in the body) is determined, the inverse 
problem involves the estimation of the cause from the knowledge of the effect.  

The use of inverse analysis techniques represents a new research paradigm, Beck (1999). The results obtained 
from numerical simulations and from experiments are not simply compared a posteriori, but a close synergism exists 
between experimental and theoretical researchers during the course of the study, in order to obtain the maximum of 
information regarding the physical problem under picture.  

Inverse problems are mathematically classified as ill-posed, whereas standard heat transfer problems are well-
posed, Hadamard (1923).  The solution of a well-posed problem must satisfy the conditions of existence, uniqueness 
and stability with respect to the input data. The existence of a solution for an inverse heat transfer problem may be 
assured by physical reasoning. On the other hand, the uniqueness of the solution of inverse problems can be 
mathematically proved only for some special cases. Also, the inverse problem is very sensitive to random errors in the 
measured input data, thus requiring special techniques for its solution in order to satisfy the stability condition 
(Tikhonov et al., 1977; Beck and Arnold, 1977; Alifanov, 1994; Beck et al., 1985; Alifanov et al., 1995; Dulikravich et 
al., 1986; Sabatier, 1978; Morozov, 1984; Murio, 1993; Trujillo, 1997; Hensel, 1991; Kurpisz et al., 1995; Desinov, 
1999; Yagola et al., 1999; Ramm et al., 2000; Ozisik et al., 2000). A successful solution of an inverse problem 
generally involves its reformulation as an approximate well-posed problem and makes use of some kind of 
regularization (stabilization) technique. In several methods, the solution for the inverse problem is obtained in the least-
squares sense.  



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 – Paper CIT04-0571 
 

Inverse problems can be solved either as a parameter estimation approach or as a function estimation approach. If 
some information is available on the functional form of the unknown quantity, the inverse problem can be reduced to 
the estimation of few unknown parameters. On the other hand, if no prior information is available on the functional 
form of the unknown, the inverse problem can be regarded as a function estimation approach in an infinite dimensional 
space of functions.  

This paper deals with the solution of a function estimation problem involving the heating of a solid cylinder in a 
temperature-controlled water bath. The inverse problem is concerned with the estimation of the boundary heat flux at 
the surface of three different cylinders made of Teflon and aluminum, by using temperature measurements taken within 
the body. For the solution of the present inverse problem we make use of the conjugate gradient method with adjoint 
problem (Alifanov et al, 1995; Ozisik and Orlande, 2000). The basic steps of this method include: (i) Direct Problem; 
(ii) Inverse Problem;  (iii) Sensitivity Problem; (iv) Adjoint Problem; (v) Gradient Equation; (vi) Iterative Procedure; 
(vii) Stopping Criterion; and (viii) Computational Algorithm. The physical problem of interest in this paper and its 
mathematical formulation are presented below, together with details of the steps of the conjugate gradient method with 
adjoint problem. 
 
2. Physical Problem and Mathematical Formulation 

 
The physical problem under picture in this work involves the heating of cylindrical body, immersed in a 

temperature controlled water bath. The body is assumed to be initially at the uniform temperature T0. For t > 0, the body 
is heated by convection with the surrounding water. The resultant heat flux to the body is assumed to be uniform over 
its surface and given by a time-dependent function q(t). The cylinder diameter is 2b and its thickness is 2L, as illustrated 
in Fig. (1). The cylinder thermophysical properties are assumed to be constant during the time elapsed for the cylinder 
to reach equilibrium with the surrounding water.  

By taking into account axial and longitudinal symmetries, the mathematical formulation of the heat conduction 
problem in the cylindrical body is given in dimensionless form by: 
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Figure 1. Body geometry 
 

3. Direct Problem and Inverse Problem 
 
In the direct problem associated with the mathematical formulation of the physical problem just described, the 

transient temperature field in the body is determined by assuming the physical properties, initial and boundary 
conditions and the geometrical characteristics of the body as known. 

The inverse problem of interest for this work deals with the identification of the boundary heat flux Q(τ), by using 
transient temperature measurements taken within the body. For the solution of the inverse problem, all the other 
quantities appearing in the mathematical formulation of the physical problem are assumed to be known with high 
degree of accuracy. On the other hand, the temperature measurements may contain random errors.  

We solve such inverse problem by making no a priori assumption regarding the functional form of the unknown 
heat flux, except for the functional space that it belongs to.  Therefore, the solution of such inverse problem is obtained 
via a function estimation approach in an infinite dimensional space of functions condition (Tikhonov et al., 1977; Beck 
et al., 1977; Alifanov, 1994; Beck et al., 1985; Alifanov et et al., 1995; Dulikravich et al., 1986; Sabatier, 1978; 
Morozov, 1984; Murio, 1993; Trujillo, 1997; Hensel, 1991; Kurpisz et al., 1995; Desinov, 1999; Yagola et al., 1999; 
Ramm et al., 2000; Ozisik and et al., 2000). The Hilbert space of square integrable functions in the time domain of 
interest is selected as the functional space for the unknown (Alifanov et al., 1995; Ozisik et al., 2000). 

It should be noticed the conceptual difference between the present inverse problem and that addressed in Part I of 
this paper, where the boundary heat flux was estimated by the identification of a constant convective heat transfer 
coefficient at the surface of the body and by the measurement of the water temperature. For the parameter estimation 
problem addressed in Part I of this paper, the thermal conductivity and the volumetric heat capacity were also 
considered as unknown parameters. However, for the cases examined, the analysis of the sensitivity coefficients 
revealed that only the thermal conductivity could be accurately identified.  

For the solution of the present function estimation problem we assume that the cylinder thermal conductivity and 
volumetric heat capacity are known with high degree of accuracy. Therefore, the effects of uncertainties of such 
quantities on the inverse problem solution are not taken into account. Methods to deal with uncertainties on these 
parameters, which were assumed as known for the inverse analysis, in addition to the temperature measurements, 
constitutes a new research direction. For details, the reader is referred to Wang et al. (2004). 

The function estimation considered here is solved through the minimization of an objective functional, involving 
the difference between measured and estimated temperatures. As for the companion paper, the following statistical 
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hypotheses are assumed valid, Beck et al. (1977): the errors in the measured variables are additive, uncorrelated, 
normally distributed, with zero mean and known constant standard-deviation; only the measured variables appearing in 
the objective function contain errors; and there is no prior information regarding the values and uncertainties of the 
unknowns. For simplicity in the mathematical analysis, we also assume that the temperature measurements are 
continuous in the time domain. 

The objective functional is given by: 
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The conjugate gradient method is used for the minimization of functional expressed by Eq. (3). The 

implementation of such method requires two auxiliary problems, known as the sensitivity problem and the adjoint 
problem. The derivations of these problems are discussed next. 
 
4. Sensitivity Problem 
 

The sensitivity problem can be obtained by assuming that the temperature θ (R,Z,τ ) is perturbed by an amount 
∆θ (R,Z,τ ), when the unknown heat flux Q(τ ) is perturbed by ∆Q(τ ). By replacing θ (R,Z,τ ) by [θ (R,Z,τ ) 
+ ∆θ (R,Z,τ )] and Q(τ ) by [Q(τ ) + ∆Q(τ )] in the direct problem given by equations (1) and subtracting the original 
direct problem from the resulting expressions and neglecting second order terms, the following sensitivity problem is 
obtained:  
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The sensitivity function ∆θ (R,Z,τ ) gives the directional derivative of θ (R,Z,τ ) in the direction of the perturbation 

∆Q(τ ), (Alifanov et al., 1995; Ozisik et al., 2000). 
 
5. Adjoint Problem 
 

To develop the adjoint problem, we introduce a Lagrange multiplier λ(R,Z,τ ). We multiply equation (1.a) by 
λ(R,Z,τ ) and integrate the resulting expression over the spatial and time domains. The expression obtained in this 
manner is added to the functional S[Q(τ )] given by equation (3) in order to obtain the following extended functional: 
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Expressions for the variation ∆S[Q(τ )] of the functional S[Q(τ )] can be developed by assuming that θ (R,Z,τ ) is 
perturbed by ∆θ (R,Z,τ ) when Q(τ ) is perturbed by ∆Q(τ ). The variation ∆S[Q(τ )] gives the directional derivative of 
S[Q(τ )] in the direction of the perturbation ∆Q(τ ), (Alifanov et al, 1995, Ozisik and Orlande, 2000). By replacing 
θ (R,Z,τ ) by [θ (R,Z,τ ) + ∆θ (R,Z,τ )], Q(τ ) by [Q(τ ) + ∆Q(τ )]and S[Q(τ )] by {S[Q(τ )] + ∆S[Q(τ )]} in equations 
(1.a-f), subtracting from the resulting expressions the original equations (1.a-f), performing some lengthy but 
straightforward manipulations and letting the terms containing ∆θ (R,Z,τ ) to go to zero (Alifanov et al., 1995, Ozisik et 
al., 2000), the following adjoint problem is obtained: 
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6. Gradient Equation 
 

In the limiting process used above to obtain the adjoint problem, the following integral term is left: 
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By invoking the hypothesis that the unknown function Q(τ ) belongs to the space of square-integrable functions in 

the domain 0 < τ < τf, we can write (Alifanov et al., 1995; Ozisik et al., 2000): 
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where S[Q(τ )]  is the gradient of the functional S[Q(τ )]. ∇

From the comparison of equations (7) and (8), we conclude that 
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which is the gradient equation for the functional. 
 
7. Iterative Procedure 
 
 The iterative procedure of the conjugate gradient method, as applied to the estimation of the unknown function 
Q(τ ) through the minimization of the functional, Eq. (3), is given by (Alifanov et al., 1995; Ozisik et al., 2000): 
 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 – Paper CIT04-0571 
 

)()()(1 τβττ kkkk dQQ −=+            (10) 
 
where the superscript k denotes the number of iterations, β k is the search step size and dk(τ ) is the direction of descent. 
 The direction of descent dk(τ ) is a conjugation of the gradient direction with previous directions of descent. It is 
given by (Alifanov et al., 1995; Ozisik et al., 2000): 
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where γ k is conjugation coefficient.  
 Different versions of the conjugate gradient method can be found in the literature depending on the form used for 
the computation of the direction of descent given by equation (11) (Alifanov et al., 1995; Ozisik et al., 2000; Colaco et 
al., 1999). For linear estimation problems such as the one under picture, where the sensitivity problem does not depend 
on the unknown function, Fletcher-Reeves’, Polak-Ribiere’s and Powel-Beale’s versions of the conjugate gradient 
method are theoretically identical, Colaco et al. (1999). In this paper we use Fletcher-Reeves’ version of the method, 
where the conjugation coefficient is taken as: 
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The step size β k is determined by minimizing the functional S[Qk+1(τ)]) with respect to β k (Alifanov et al., 1995, 
Ozisik et al., 2000). We obtain: 
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where ∆θ (R,Z,τ ;d k(τ))  is  the  solution  of  the  sensitivity  problem  given  by equations (4.a-f), obtained by setting 
∆Qk(τ)=dk(τ). 
 
8. Stopping Criterion 
 

The iterative procedure of the conjugate gradient method, given by equations (10-13) with the gradient computed 
from equation (9), is applied for the estimation of the unknown function Q(τ), until a stopping criterion is satisfied. We 
stop the iterative procedure of the conjugate gradient method when the functional given by equation (3) becomes 
sufficiently small, that is, 
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      If the measurements are assumed to be free of experimental errors, we can specify ε as a relative small number. 
However, actual measured data contain experimental errors, which will result in an unstable inverse problem solution as 
the estimated temperatures approach those measured. Such difficulty can be alleviated by utilizing the Discrepancy 
Principle (Alifanov et al., 1995; Ozisik et al., 2000) to stop the iterative process and to provide the conjugate gradient 
method with the needed regularization for a stable solution. 

In the discrepancy principle, we assume that the inverse problem solution is sufficiently accurate when the 
difference between estimated and measured temperatures is of the order of magnitude of the standard deviation (σ) of 
the measurements. The tolerance ε is then obtained from equation (3) as 
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The estimation of the boundary heat flux with the conjugate gradient method can be suitably arranged in a 
straightforward computational algorithm, which is omitted here for the sake of brevity. Details of such computational 
algorithm can be readily found in Ozisik et al. (2000).   

 
9. Experiments 
 

The experiments involving the heating of a cylindrical body in a temperature-controlled water bath were conducted 
in the Laboratory of Heat Transmission and Technology (LTTC) of PEM/COPPE. In order to examine the effects of the 
material type and body dimensions on the estimated parameters, the experiments were run on three different specimens. 
The specimens’ material and dimensions are summarized in table 1. Each specimen was instrumented with two type-K 
thermocouples, which were located near the body lateral surface and body center, respectively. The thermocouple 
locations are also presented in Tab. (1), by taking as reference the cylinder center, as illustrated in Fig. (1). The 
temperature readings were automatically recorded by using a data logger, with a frequency of 1 measurement per sensor 
per second. The three specimens are illustrated in Fig. (2).  
 
Table 1. Specimens’ characteristics 

Specimen Material Thickness (mm) Diameter (mm) Location of 
thermocouple 1* 

(r,z) 

Location of 
thermocouple 2* 

(r,z) 
1 Teflon 20.6 52.1 (0,0) (0,8.4) 
2 Teflon 9.4 51.6 (5.3,0) (3.6,2.6) 
3 Aluminum 72.7 28.6 (0,0) (13.5,0) 

* Measurements taken as reference the cylinder center (origin) 
 

 
 

Figure 2. Specimen 
 

In the experiments, the specimen, initially in equilibrium at room temperature, was fully immersed into the water. 
The time instant when the specimen was immersed was carefully recorded, in order to provide the time reference for the 
problem. The water temperature control in the bath was set to 50 oC, but during the experiments the water temperature 
was recorded. The experiment was run until the specimen was practically in thermal equilibrium with the water. 
 
10. Results and Discussion 

Before examining the estimation of the boundary heat flux by using actual measurements from the thermocouples 
located in accordance with Tab. (1), let’s estimate the unknown function with simulated measurements. The simulated 
measurements were obtained from the solution of the direct problem (1.a-f) at the thermocouple locations, by using a 
function specified for Q(τ). The solution of the inverse problem obtained with simulated measurements is compared 
with the functional form used to generate the simulated measurements, in order to address the accuracy of the solution 
technique. 

 Figures (3) and (4) present comparisons between exact and estimated heat fluxes for specimen 3. The most 
difficult functions to be recovered by inverse analysis, involving discontinuities in the function and in its first 
derivative, were used to generate the simulated measurements in Figs. (3) and (4), respectively. These figures show that 
the present solution approach is capable of recovering such functional forms quite accurately. Similar results were 
obtained with simulated measurements for specimens 1 and 2. 
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Figure 3. Estimation of a function with discontinuous 
first derivative by using simulated measurements for 
specimen 3 
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Figure 4. Estimation of a discontinuous function with 
simulated measurements for specimen 3 

 
For the estimation of the boundary heat flux with actual measurements presented below, values for the 

thermophysical properties of the specimens were required. For the results obtained in this work, the values of thermal 
conductivity and volumetric heat capacity presented in Tab. (2) were used for the inverse analysis. Such values were 
obtained from the literature and from Part I of this paper.  
 

Table 2. Values used for the thermophysical properties 
Specimen k (W/mK) C (J/m3K) 

1 0.24 2.3×106 
2 0.30 2.3×106 
3 147.2 2.4×106 

 

Figure 5 presents the estimated heat flux obtained with actual measurements from specimen 1. We also present in 
this figure the heat flux calculated with the heat transfer coefficient and the surface temperature obtained in Part I of 
this paper. As expected, the estimated heat flux is initially large in magnitude and gradually decreases to zero. 
Eventually, the heat flux becomes negative because of uncertainties in the temperature measurements. Although the 
calculated hat flux follows the same trend of the estimated heat flux, it reaches negative values with larger magnitudes. 
Such is the case because this heat flux is calculated with the difference between the surface and water temperatures, and 
it is thus more sensitive to the uncertainties on the water temperature measurements. 
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Figure 5. Heat flux for specimen 1 
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A comparison between the estimated heat flux, obtained with the function estimation approach, and that calculated 
in Part I of this paper for specimen 2, is presented in Fig. (6). This figure shows a very good agreement between the 
estimated and calculated heat fluxes for this case. Also, we notice that the heat flux does not become negative for 
specimen 2. Figure 7 presents a comparison between measured and estimated temperatures for thermocouple 2 in 
specimen 2. The agreement is very good. 
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Figure 6. Heat flux for specimen 2 
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Figure 7. Comparison between measured and estimated 
temperatures for specimen 2 

 
Figure 8 presents the estimated and the calculated heat fluxes for specimen 3. As for specimen 2, the agreement 

between the heat fluxes obtained with the parameter and estimated approaches is very good. 
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Figure 8. Heat flux for specimen 3 

 

11. Conclusions 

This paper presented the solution of the inverse function estimation problem involving the heating of cylindrical 
bodies in hot water. Experiments were run with three different cylinders, in order to examine the effects of size and 
material properties on the estimation results. The present inverse problem is concerned with the estimation of the time-
dependent boundary heat flux, which is assumed to be uniform at the cylinder surface.  

The use of simulated measurements revealed that the present function estimation approach is capable of recovering 
the boundary heat flux quite accurately, even for functional forms containing discontinuities and sharp corners. For the 
three specimens, the heat flux estimated with the present approach was in quite good agreement with that calculated 
with the heat transfer coefficient estimated in Part I of this paper. Therefore, the hypothesis of constant heat transfer 
coefficient used in Part I of this paper is reliable. This result reveals that forced convection is the dominant heat transfer 
mode between the cylinder and the water in the bath. 
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The continuation of this work, described in the two parts, involves the examination of the uncertainties on 
quantities assumed as exactly known for the inverse analysis. This represents a new research direction that involves 
Bayesian statistical analysis. 
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