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Abstract. This paper presents the solution of an inverse heat transfer problem of parameter estimation. The physical problem 
considered here involves the heating of a solid cylinder by hot water in a temperature-controlled bath. This paper addresses the 
identification of unknown parameters appearing in the mathematical formulation of the physical problem, including the cylinder 
thermal conductivity and volumetric heat capacity, as well as the heat transfer coefficient between the cylinder and water. 
Temperature measurements taken at selected positions within the cylinder are assumed available for the inverse analysis. Analyses 
of the sensitivity coefficients with respect to each of the unknown parameters and of the determinant of the information matrix are 
presented in the paper, for test-cases involving Teflon cylinders of two different sizes and one aluminum cylinder. The unknown 
parameters are estimated with the Levenberg-Marquardt method of minimization of the least-squares norm. Results obtained with 
actual experimental measurements are presented in the paper. This work was performed within the scope of a graduate course in 
the Department of Mechanical Engineering of COPPE/UFRJ.  The last six authors of this paper are the students of this course; they 
are listed in alphabetical order, irrespective of their grade in the course.    
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1. Introduction  
 

Inverse heat transfer problems rely on temperature and/or heat flux measurements for the estimation of unknown 
quantities appearing in the analysis of physical problems in this field. As an example, inverse problems dealing with 
heat conduction have been generally associated with the estimation of an unknown boundary heat flux, by using 
temperature measurements taken below the boundary surface. Therefore, while in the classical direct heat conduction 
problem the cause (boundary heat flux) is given and the effect (temperature field in the body) is determined, the inverse 
problem involves the estimation of the cause from the knowledge of the effect.  

The use of inverse analysis techniques represents a new research paradigm (Beck, 1999). The results obtained 
from numerical simulations and from experiments are not simply compared a posteriori, but a close synergism exists 
between experimental and theoretical researchers during the course of the study, in order to obtain the maximum of 
information regarding the physical problem under picture.  

Inverse problems are mathematically classified as ill-posed, whereas standard heat transfer problems are well-
posed (Hadamard, 1923).  The solution of a well-posed problem must satisfy the conditions of existence, uniqueness 
and stability with respect to the input data. The existence of a solution for an inverse heat transfer problem may be 
assured by physical reasoning. On the other hand, the uniqueness of the solution of inverse problems can be 
mathematically proved only for some special cases. Also, the inverse problem is very sensitive to random errors in the 
measured input data, thus requiring special techniques for its solution in order to satisfy the stability condition 
(Alifanov, 1994; Alifanov et al., 1995; Beck et al., 1977; Beck et al., 1985;  Denisov, 1999;  Dulikravich et al., 1996; 
Hensel, 1991; Kurpisz et al., 1995; Morozov, 1984; Murio, 1993; Ramm et al., 2000; Ozisik et al., 2000; Sabatier, 
1978; Tikhonov et al., 1977; Trujillo et al., 1997 and Yagola et al., 1999). A successful solution of an inverse problem 
generally involves its reformulation as an approximate well-posed problem and makes use of some kind of 
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regularization (stabilization) technique. In several methods, the solution for the inverse problem is obtained in the least-
squares sense. 

Inverse problems can be solved either as a parameter estimation approach or as a function estimation approach. If 
some information is available on the functional form of the unknown quantity, the inverse problem can be reduced to 
the estimation of few unknown parameters. On the other hand, if no prior information is available on the functional 
form of the unknown, the inverse problem can be regarded as a function estimation approach in an infinite dimensional 
space of functions. 

This paper deals with the solution of a parameter estimation problem involving the heating of a solid cylinder in a 
temperature-controlled water bath. The inverse problem is concerned with the estimation of the parameters appearing in 
the mathematical formulation of the physical problem, including the heat transfer coefficient between the body surfaces 
and the water, as well as the thermal conductivity and volumetric heat capacity of the cylinder material. The sensitivity 
coefficients and the determinant of the information matrix are examined for three different cylinders. The parameters 
with large and linearly independent sensitivity coefficients are estimated by using actual experimental data. The 
Levenberg-Marquardt Method, (Beck and Arnold, 1977; Ozisik and Orlande, 2000) of minimization of the least-squares 
norm is used as the estimation procedure.  
 
2. Physical Problem and Mathematical Formulation 
 

The physical problem under picture in this work involves the heating of a cylindrical body, immersed in a 
temperature controlled water bath. The body is assumed to be initially at the uniform temperature T0. For t > 0, the body 
is heated by convection with the surrounding water, which is maintained at the constant temperature T , with a uniform 
and constant heat transfer coefficient . The cylinder diameter is 2b and its thickness is 2L, as illustrated in Fig 1. The 
cylinder thermophysical properties are assumed to be constant during the time elapsed for the cylinder to reach 
equilibrium with the surrounding water.  

∞

h∞

By taking into account axial and longitudinal symmetries, the mathematical formulation of the heat conduction 
problem in the cylindrical body is given by: 
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and with the initial condition given by:  
 

oTzrT =)0,,(                     (1.f) 
 
where k and C ( = ρ cp ) are the thermal conductivity and volumetric heat capacity of the cylindrical body, respectively. 
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Figure 1. Body geometry 

 
 
3. Direct Problem and Inverse Problem 

 
In the direct problem associated with the mathematical formulation of the physical problem just described, the 

transient temperature field in the body is determined by assuming the physical properties, initial and boundary 
conditions and the geometrical characteristics of the body as known. 

The inverse problem of interest for this work deals with the identification of the volumetric heat capacity (C), 
thermal conductivity (k) and heat transfer coefficient ( ), by using transient temperature measurements taken within 
the body. For the solution of the inverse problem, the initial temperature of the body (T

∞h
0), as well as the water 

temperature ( ) and the body geometry, are assumed to be known with high degree of accuracy. On the other hand, 
the temperature measurements may contain random errors.  

∞T

The inverse problem under picture is a parameter estimation problem. For the solution of such inverse problem, we 
consider here the use of minimization techniques. An objective function is then defined, involving the difference 
between measured and estimated temperatures. In order to appropriately choose the objective function, some 
hypotheses regarding the measurement errors are required. Let us assume valid the following statistical hypotheses 
(Beck and Arnold, 1977): the errors in the measured variables are additive, uncorrelated, normally distributed, with zero 
mean and known constant standard-deviation; only the measured variables appearing in the objective function contain 
errors; and there is no prior information regarding the values and uncertainties of the unknown parameters. In this case, 
the ordinary least squares norm becomes a minimum variance estimator, Beck and Arnold (1977). The minimization of 
such objective function is described next. 
 
3. Method of Solution for the Inverse Problem 

 
The inverse problem of interest in this work deals with the estimation of the vector of unknown parameters through 

the minimization of the ordinary least squares norm, which is given by: 
 
( ) [ ( )] [ (T

OLSS = − −P Y T P Y T P)]  (2) 
 
where P = [ k , C , ]  and ∞h
 

( )1 1 2 2[ ( )] , , ... ,T
I IY T Y T Y T− = − − −Y T P

r r r r r r

r r  
(3.a) 

The row vector [  contains the difference between measured and estimated variables for each of the M 
sensors at time t

]i iY T−

i, i = 1, …, I, that is,  
 

( )1 1 2 2( ) , , ... ,i i i i i i iM iMY T Y T Y T Y T− = − − −
r r

 
for i=1,…,I (3.b) 

 
The iterative procedure of the Levenberg-Marquardt Method for the minimization of the ordinary least squares 

norm expressed by Eq. (2) is used in this work. Such procedure is given by (Beck and Arnold, 1977; Ozisik and 
Orlande, 2000): 
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( ) ]1 1( ) [k k T k k T kλ+ −= + + −P P J J J Y T PΩ  (4) 
 
where k denotes the number of iterations, J is the sensitivity matrix, Ω is a diagonal matrix and λ is a scalar named 
damping parameter (Beck and Arnold, 1977; Ozisik and Orlande, 2000). The purpose of the matrix term λk

Ω
k in Eq. (4) 

is to damp oscillations and instabilities due to the ill-conditioned character of the problem, by making its components 
large as compared to those of JTJ, if necessary. The damping parameter is made large in the beginning of the iterations. 
With such an approach, the matrix JTJ is not required to be non-singular in the beginning of iterations and the 
Levenberg-Marquardt Method tends to the Steepest Descent Method, that is, a very small step is taken in the negative 
gradient direction. The parameter λk is then gradually reduced as the iteration procedure advances to the solution of the 
parameter estimation problem and then the Levenberg-Marquardt Method tends to the Gauss Method, (Beck et al, 
1977). However, if the errors inherent to the measured data are amplified, generating instabilities on the solution as a 
result of the ill-conditioned character of the problem, the damping parameter is automatically increased. Such an 
automatic control of the damping parameter makes the Levenberg-Marquardt method a quite robust and stable 
estimation procedure, so that it does not require the use of the Discrepancy Principle in the stopping criterion to become 
stable, like the conjugate gradient method (Ozisik and Orlande, 2000). 
 
 The Sensitivity  matrix, J, for a general case involving the estimation of N parameters, is defined as: 
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and  I = number of transient measurements per sensor 
  M = number of sensors 
  N = number of unknown parameters 
 
4. Statistical Analysis 

 
By performing a statistical analysis it is possible to assess the accuracy of ˆ

jP , which are the values estimated for 
the unknown parameters Pj, j=1,...,N. By assuming valid the statistical hypotheses about the measurement errors 
described above, the covariance matrix, of the estimated parameters ˆ

jP , corresponding to the ordinary least squares 
norm, is given by (Beck and Arnold, 1977): 

 
1 2ˆcov ( ) ( )T σ−= =V P J J           (6) 

 
The standard deviations for the estimated parameters can thus be obtained from the diagonal elements of V as: 

 

ˆ
ˆ ˆcov ( , )

j j jP P Pσ ≡  for  j=1,...,N        (7) 

 
Confidence intervals for the estimated parameters at the 99% confidence level can be obtained as: 
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ˆ

 

ˆ
ˆ ˆ2.576 2.576

j jj j jP PP P Pσ σ− ≤ ≤ +  for  j=1,...,N      (8) 

The joint confidence region for the estimated parameters is given by Beck and Arnold (1977): 
1ˆ ˆ( ) ( )T

N
2χ−− −P P V P P ≤           (9) 

where 2
Nχ  is the value of the chi-square distribution with N degrees of freedom for a given probability. 

 
5. Design of Optimum Experiments 

 
Optimum experiments can be designed by minimizing the hypervolume of the confidence region of the estimated 

parameters, in order to ensure minimum variance for the estimates. The minimization of the confidence region given by 
Eq. (9) can be obtained by maximizing the determinant of V-1, in the so-called D-optimum design (Beck and Arnold, 
1977). Since the covariance matrix is given by Eq. (8), we can then design optimum experiments by maximizing the 
determinant of the so-called Fisher’s Information Matrix, 

 
(Beck and Arnold, 1977). Therefore, optimal 

experimental variables, such as the duration of the experiment and the number of measurements, are chosen based on 
the criterion 

TJ J

 
max TJ J            (10) 

 
6. Experiments 

 
The experiments involving the heating of a cylindrical body in a temperature-controlled water bath were conducted 

in the Laboratory of Heat Transmission and Technology (LTTC) of PEM/COPPE. In order to examine the effects of the 
material type and body dimensions on the estimated parameters, the experiments were run on three different specimens. 
The specimens’ materials and dimensions are summarized in table 1. Each specimen was instrumented with two type-K 
thermocouples, which were located near the body lateral surface and the body center, respectively. The thermocouple 
locations are also presented in Tab. (1), by taking as reference the cylinder center, as illustrated in Fig. (1).  The 
temperature readings were automatically recorded by using a data logger, with a frequency of 1 measurement per sensor 
per second. The three specimens are illustrated in Fig (2). 
 

Table 1. Specimens’ characteristics 
 

Specimen Material Thickness (mm) Diameter (mm) 
Location of 

thermocouple 1* 
(r,z) 

Location of 
thermocouple 2* 

(r,z) 
1 Teflon 20.6 52.1 (0,0) (0,8.4) 
2 Teflon 9.4 51.6 (5.3,0) (3.6,2.6) 
3 Aluminum 72.7 28.6 (0,0) (13.5,0) 

* Taken as reference the cylinder center 
 
 

 
Figure 2. Specimen 

In the experiments, the specimen, initially in equilibrium at room temperature, was fully immersed into the water. 
The time instant when the specimen was immersed was carefully recorded, in order to provide the time reference for the 
problem. The water temperature control in the bath was set to 50 oC, but during the experiments the water temperature 
was recorded in order to provide the T value for the boundary conditions in Eqs. (1.c,e). The experiment was run until 
the specimen was practically in thermal equilibrium with the water. 

∞
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7. Results and Discussion 

 
Before attempting to estimate the unknown parameters, let’s first examine the sensitivity coefficients at each of the 

sensor locations in the three specimens, as well as the transient variation of the determinant of the information matrix. 
We note that, for nonlinear estimation problems such as the one under picture in this work, these analyses are not 
global, because these quantities are functions of the unknown parameters. Therefore, a priori estimated values for the 
parameters are required for the analyses of the sensitivity coefficients and of the determinant of the information matrix. 
Table 2 presents the values that were used for the parameters in these analyses for each of the specimens. The values for 
thermal conductivity and volumetric heat capacity were taken from literature values (Ozisik, 1989). Similarly, the 
values used for the heat transfer coefficient were calculated with correlations for forced convection around the cylinder 
(Ozisik, 1989). 

 

Table 2. Values used for the analyses of the sensitivity coefficients and of the determinant of the information matrix 
 

Specimen k (W/m K) C (J/m3K) ∞h (W/m2K) 
1 0.23 2.3 × 106 1300 
2 0.28 2.3 × 106 1500 
3 204 2.4 × 106 1610 

 

Figures 3.a,b present the normalized sensitivity coefficients with respect to each of the unknown parameters for 
specimen 1, at the locations of thermocouples 1 and 2, respectively. The normalized sensitivity coefficients were 
obtained by multiplying the original sensitivity coefficients by the parameters that they are referred to. These figures 
show that, for both thermocouple locations, the sensitivity coefficients with respect to the thermal conductivity and to 
the volumetric heat capacity are linearly dependent. Therefore, the simultaneous estimation of such two parameters is 
not possible in this case. Also, we notice in figures Figs. (3.a,b) that the sensitivity coefficient with respect to the heat 
transfer coefficient is quite small. As a result, the estimation of is difficult and large confidence intervals are 
expected because of ill-conditioning of the matrix J

∞h
TJ. Indeed, an analysis of equations (1.a-f) reveals that the three 

parameters actually appear in the mathematical formulation as the ratios k/C and /k. In fact, we could expect a 
priori that the simultaneous estimation of the three parameters would not be possible for the present case, but only of 
the ratios k/C and /k.  

∞h

∞h
The qualitative behavior of the sensitivity coefficients for specimens 2 and 3 are very similar to those shown in 

Figs. (3.a,b). Therefore, for the sake of brevity, they are not presented here. We note, however, that the sensitivity 
coefficients obtained at the two thermocouple locations are practically identical for specimen 3. This is due to the very 
low Biot number because of the high thermal conductivity of aluminum, which result in a practically uniform 
temperature within the specimen. Furthermore, for specimen 2 the sensitivity coefficient with respect to the heat 
transfer coefficient is linearly-dependent with the two other sensitivity coefficients. Hence, for specimen 2 only one of 
the parameters can be estimated.  

 

t (s)

N
or
m
al
iz
ed
S
en
si
tiv
ity
C
oe
ffi
ci
en
t-
C
en
te
r(

o
C
)

1000 2000
-20

-15

-10

-5

0

5

10

15

20

h
k
C

t (s)

N
or
m
al
iz
ed
S
en
si
tiv
ity
C
oe
ffi
ci
en
t-
S
ur
fa
ce
(o
C
)

1000 2000
-8

-6

-4

-2

0

2

4

6

8

h
k
C

 
(a)       (b) 

Figures 3.a,b. Sensitivity coefficients for thermocouples 1 and 2, respectively – Specimen 1 
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The determinant of the information matrix, obtained for the estimation and k and for the estimation of k and C, 
are shown in Figs. (4.a,b), respectively, for specimen 1. We note that such determinants increase until the specimen 
reaches thermal equilibrium with water, when the sensitivity coefficients tend to zero (see Figs (3.a,b)). Therefore, 
measurements taken after thermal equilibrium between the specimen and water has been reached are not useful for the 
parameter estimation. A comparison of figures 4.a and 4.b reveal that the determinant for the estimation of and k is 
much larger than that for the estimation of k and C, for specimen 1. This is a result of the linear dependence between the 
sensitivity coefficients for k and C. The behavior for the determinant of the information matrix shown in figures 4.a,b is 
representative of those obtained for specimens 2 and 3. We note, however, that thermal equilibrium is reached much 
faster for specimen 3 because of the high thermal conductivity of aluminum. 

∞h

∞h
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Figures 4.a,b. Determinant of the information matrix obtained for the estimation of and k and for the estimation of k 
and C, respectively – Specimen 1 

∞h

 

We present in Table (3) the values estimated simultaneously for and k, for specimens 1 and 3, as well as the 
value estimated for k for specimen 2. The results presented in Tab. 3 were obtained by using the values of C (and , 
required only for specimen 2) presented in Table (2) in the inverse analysis. The 99% confidence intervals obtained for 
the parameters are also presented in this table. We note in Tab. (3) that the values estimated for the thermal conductivity 
of Teflon for specimens 1 and 2 are remarkably similar. The value estimated for the thermal conductivity of aluminum 
with specimen 3 is also in good agreement with the values found in the literature (Ozisik, 1989). Table (3) shows that, 
generally, the heat transfer coefficient is larger for specimen 3. This is probably caused by the geometry of this 
specimen, which is slender than those of specimens 1 and 2.  

∞h

∞h

 
 

Table 3. Estimated parameters 
 

Specimen k (W/mK) ∞h (W/m2K) 
1 0.27 ± 0.05 246 ± 157 
2 0.299 ± 0.001 - 
3 147 ± 3 1215 ± 3 

 

The residuals obtained from the estimation of h and k for the two thermocouples with specimen 1 are presented 
in Fig. (5.a,b).  An analysis of these figures reveals that the residuals are large and highly correlated. This gives an 
indication that the mathematical model used for the physical problem is not appropriate (Beck and Arnold, 1977). Also, 
uncertainties on the values used for the volumetric heat capacity, based on literature data, may have caused such a 
behavior of the residuals. Similar residuals were obtained with specimen 2. On the other hand, the agreement between 
measured and estimated temperatures is much better for specimen 3, as illustrated in Fig. (6). 

∞
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Figures 5.a,b. Residuals (ºC) versus time (seconds) for thermocouples 1 and 2, respectively – Specimen 1 
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Figures 6. Comparison between measured and estimated temperatures – Specimen 3 

 

8. Conclusions 
 
This paper presented the solution of the inverse parameter estimation problem involving the heating of cylindrical 

bodies in hot water. Experiments were run with three different cylinders, in order to examine the effects of size and 
material properties on the estimation results. From the parameters appearing in the mathematical formulation of the 
physical problem, except for specimen 2, the thermal conductivity and the heat transfer coefficient exhibited linearly 
independent sensitivity coefficients, and were selected as unknown. The values estimated for thermal conductivity are 
in good agreement with those available in the literature. Despite such a result, the temperature residuals were large and 
highly correlated, specially for specimens 1 and 2. This result motivated the solution of the inverse problem as a 
function estimation approach, as described in Part II of this paper. 
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